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Abstract

The abstract concept of perceptual image quality has been studied almost exclusively
as a global image property. In this thesis, the notion of subjective opinion scores is
extended to spatially small regions of 64× 64 pixels. A novel dataset of 32.000 individ-
ually annotated patches is created and used to train a convolutional neural network for
local image quality assessment. We evaluate its predictiveness on an auxiliary dataset
consisting of locally quality-annotated images. Additional experiments show that aver-
aging quality maps created by our model already outperforms many traditional global
image quality assessment methods. A meta aggregation model on top of a combination
of spatially small feature maps, one of them being a quality map created by our model,
performs close to the state of the art. As an application, we use our model to guide the
bit allocation scheme in an extended JPEG image compression algorithm.

Zusammenfassung

Perzeptuelle Bildqualität wurde im Kontext menschlicher Wahrnehmung bisher fast
ausschließlich als globale Eigenschaft von Bildern betrachtet. Diese Thesis erweitert den
Begriff subjektiver Qualitätsbewertungen auf kleine Bildbereiche von 64×64 Pixeln. Ein
neuartiger Datensatz von 32.000 individuell bewerteten Bildausschnitten wird erstellt,
auf welchem ein Convolutional Neural Network für lokale Qualitätsvorhersagen trainiert
wird. Die Aussagekraft dieses Modells wird auf einem zweiten Datensatz getestet,
welcher aus Bildern mit zusätzlicher lokaler Qualitätsinformation besteht. Weitere Ex-
perimente zeigen, dass bereits der Mittelwert aller lokalen Qualitätsvorhersagen unseres
Modells auf einem gegebenen Bild die globale menschliche Wahrnehmung besser ap-
proximiert als viele klassische Methoden. Ein Metamodell, welches auf kombinierten,
räumlich kleinen Feature Maps arbeitet, erzielt eine Leistung nahe des Standes der ak-
tuellen Forschung. Abschließend werden Qualitätsvorhersagen des lokalen Modells als
Gewichtungsschema für die Kompressionsstärke in einem erweiterten JPEG Algorithmus
evaluiert.
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1 Introduction

1.1 Motivation

Digital images are ubiquitous in our modern world as they enable capturing, storage,
transmission and manipulation of visual information. Passing through an intricate pro-
cessing pipeline until being presented to an observer, images are prone to a variety of
impairments and distortions. Physical limitations of camera equipment, printers and
screens as well as more deliberate tradeoffs during encoding and compression influence
the final result.

The discipline of Image Quality Assessment (IQA) is concerned with quantifying vi-
sual quality as perceived by humans. Although this concept lacks a generally accepted
definition, studies have shown to yield reproducible mean opinion scores when querying
a sufficiently large group of people on their opinions on a set of images. With millions
of uploads to social media platforms per day, the amount of image data has reached
an overwhelming volume. Automated prediction of image quality has numerous appli-
cations. From news outlets seeking suitable material for publications through media
providers measuring the performance of their streaming services to researchers develop-
ing image compression methods: subjective studies are often too time- and cost-intensive
to be viable. In this thesis, a machine-learning based approach to local image quality
assessment is presented and evaluated.

1.2 Structure of this Thesis

Following this introduction, Section 2 establishes the state of the art and identifies room
for possible improvements. In Section 3, notions of and assumptions on the concpet of
subjective image quality are discussed and the KonPatch database is introduced. Section
4 provides technical background on the machine learning models that are trained and
tested in Section 5. A practical application of one of our models in the domain of image
compression is presented in Section 6. The results of the experiments are conclusively
discussed in Section 7.

Parts of the work presented in this thesis have been published in [1] and [2].
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2 Related Work

Image quality assessment (IQA) is a comparatively young field that emerged with the
prevalence of digital cameras. The relevant literature is nevertheless extensive: IQA
methods exist on a range from traditional signal processing and statistics to machine
learning, there are papers on the human visual system on a neuropsychologic level and
reports on subjective studies and the design of image quality databases. This section is
compartmentalized to achieve a comprehensive depiction of the state of the art.

2.1 Databases

Researchers have published various databases to study perceptual image quality as a
consensus-based property of images. From a coarse perspective, one usually distinguishes
three classes of IQA related databases:

2.1.1 Artificially Distorted Databases

Artificially distorted databases are created by applying distortions, e.g. Gaussian blur,
to a set of source images. The main advantages are that such databases contain multiple
versions of the same source image and that apriori information about the severity of the
distortion is available.

The baseline for modern IQA was set with the “LIVE Public-Domain Subjective Image
Quality Database” [3, 4]. It consists of 29 pristine images which were distorted using
JPEG and JPEG2000 compression, white noise, Gaussian blur and fast Rayleigh fading.
The latter is statistically modeling the error introduced by physical signal propagation,
for example along a wire or through a radio transmission. The LIVE database was
subjectively rated in a controlled lab environment with more than 20 ratings per image.
A related study conducted by Sheikh et al. [5] on this dataset compares full-reference
IQA methods, of which some are introduced in Section 2.2.2.

A less noticed example published by Le Callet and Florent is the “IRCCyN/IVC
Subjective Quality Assessment Database” [6], an early release containing 10 original
images impaired with 4 types of distortions. Subjective scores were also collected in a
lab study with 15 observers per image.

Ponomarenko et al. released the “Tampere Image Database (TID) 2008” [7]. Com-
pared to LIVE it lacks in terms of content diversity with only 25 source images. By
applying 17 types of distortions with 4 levels each, the set contains a total of 1700
distorted images. The authors also published a reference comparison of algorithms on
their database [8]. Three years later, an extended version with both increased content
diversity and more artificial distortions was released under the name TID2013 [9].

The “CSIQ Image Quality Database” by Larson and Chandler [10, 11] is notable for
grouping source images into five content categories: animals, landscape, people, plants
and urban. In a wider sense, this approach of relating content to visual quality is taken up
again in publications where transfer-learning is used to gear models originally intended
for object recognition towards quality assessment, for example by Varga et al. [12].
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The previously discussed databases make the assumption that image quality can be
sufficiently modeled by applying a single distortion to a pristine image. The “LIVE
Multiply Distorted Image Quality Database” [13] was the first to addressed this issue by
artificially corrupting source images with multiple distortions at the same time. However,
this database was by far not as widely adopted as its single-distortion predecessor.

Artificially distorted databases have shortcomings: images in-the-wild are seldom im-
paired by a single distortion, but rather by an unknown mixture of distortions. Au-
thentic mimicking may be non-trivial, e.g. for a motion blurred subject in front of an
unimpaired background. Such distortions vary spatially and are content and context-
dependent. Another issue is content diversity. Since artificially distorted databases aim
to include many types of distortions at multiple levels, they quickly grow in size relative
to the number of source images. This limitation raises the question whether they are
suitable test sets for IQA algorithms at all.

2.1.2 Authentically Distorted Databases

The recently favored approach to refrain from artificially distorting a small set of pristine
source images and rather collect large sets of images of diverse content and quality. The
“Camera Image Database 2013” [14] is probably the first ‘authentically’ distorted dataset
that was released for the purpose of image quality assessment. It consists of 480 images
taken with 79 different devices, which are arranged in 8 clusters according to scene
descriptions. Ghaiyaram and Bovik published the “LIVE in the Wild Image Quality
Challenge Database” [15]. With 1162 images and over 350.000 opinions, it quickly
became as popular as its artificially distorted predecessor.

The largest dataset according to our knowledge is the “Konstanz Image Quality
Database 10k” [16], consisting of 10,073 source images that were assessed in a crowd-
sourcing study with roughly 1.2 million ratings. The purpose of this dataset is to serve
as a training set for machine learning algorithms.

2.1.3 Miscellaneous Databases

There are noteworthy datasets besides those that were annotated especially for IQA. The
“Waterloo Exploration Database” [17], which is taking a different approach to quality
assessment, consists of 4744 original images and 94.880 artificially distorted derivatives.
Impairments are introduced by JPEG, JPEG2000, white noise and Gaussian blur. In-
stead of having all images subjectively rated, the authors ran 20 published IQA metrics
on their dataset and performed a systematic comparison, revealing discrepancies between
known artificial distortions and predicted image quality for more than 6 million image
pairs.

The “ImageNet” [18,19] dataset was released 2010 and provides an “ontology of images
built upon the backbone of the WordNet structure” [18]. It is probably best-known for
the ImageNet large-scale visual recognition challenge (ILSVRC). Though not directly
quality-related, this dataset was used to train deep convolutional neural networks from
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scratch that were later fine-tuning to predict quality, see Section 2.2.3.
Closer related to image quality is the last example in this list, Vu et al.’s “CSIQ Local Im-
age Sharpness Database” [20], which consists of only six images that were lab-annotated
for locally perceived sharpness by eleven judges.

2.2 Objective Image Quality Assessment

Image quality assessment algorithms have been proposed merely in the last two decades.
Generic fidelity metrics that originated in the signal processing domain have been known
for a longer period and serve as a baseline for this particular task.

One usually distinguishes three classes of IQA algorithms in the literature, depending
on the amount of information they require besides the image under assessment. Full-
reference methods rely on the availability of a pristine, undistorted reference image and
perform a comparison to the distorted version. No-reference algorithms, on the other
hand, do not require further information at all, which is why they are also referred to as
“blind” methods and deemed to be the most complicated. Reduced-reference algorithms
require only some additional knowledge, e.g. the type of the predominant distortion in
the image.

2.2.1 Representation of Visual Information

The way we interact with digital visual information is based on the Young-Helmholtz
theory of trichromatic color vision [21], which states that the human eye is capable of
interpreting mixtures of red, green and blue colored light. Devices at the endpoints
as well as the internal representations are commonly designed in accordance with this
principle.

Definition 1. A digital image is a matrix I ∈ Cm×n, where C is a discrete, finite set
of color values. Throughout this text, Ĩ shall refer to a pristine, undistorted reference
version of I.

2.2.2 Full-Reference IQA

In signal processing, the Mean Square Error and the Peak Signal to Noise Ratio [22]
are prominent signal fidelity metrics. For grayscale images where e.g. C = {0, . . . , 255},
they are defined as follows:

MSE (I, Ĩ) =
1

mn

m∑
i=1

n∑
j=1

(
Ii,j − Ĩi,j

)2
(1)

PSNR(I, Ĩ) = 10 log10

(
MAX I

MSE (I, Ĩ)

)
(2)

Where MAX I is the maximal possible value of an element of I. For color images,
Salomon [22] defines the PSNR on luminance values corresponding to the RGB values,
which are calculated pixel-wise according to [23] as: L = 0.299R+ 0.587G+ 0.114B.
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(a) Original image (b) Gaussian noise

(c) Salt-and-pepper noise (d) Gaussian blur

Figure 1: All distorted images have the same MSE of 480 relative to the original.

Despite their prevalence, the MSE and consequently the PSNR are improper metrics for
perceived visual quality, as illustrated in Figure 1. All distorted images have the same
MSE relative to the original but vary in quality. The simplicity of the MSE is also its
flaw: its pixelwise, sign-independent formulation does not consider the rich structure
that natural images exhibit. A study conducted by Huyn et al. [24] on the correlation
of MOS values with PSNR for different video codecs confirms what is showcased in
our example. Allegedly, the metric is not only unsuitable cross-content but also cross-
distortion. A more thorough discussion of the MSE is given by Wang et al. [25].

A metric geared specifically towards perceived visual error is the “Structural Similarity
Index” [26]. The approach uses three functions comparing luminance, contrast and
structure. Contrast is measured by the standard deviation of an image and structure by
the correlation between the distorted image and the pristine reference.

Further extending this paradigm shift from pixel-level to higher-level features, the
“Feature Similarity” as proposed by Zhang et al. [27] constructs maps based on phase
congruency and image gradient magnitudes, which are then combined to a global quality
score. This approach is braced by a neuroscientific study by Henriksson et al. [28] that
investigated visual cortex activity in relation to phase congruency phenomena using
magnetic resonance imaging of the human brain.
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2.2.3 No-Reference IQA

Not resorting to additional information besides the image under assessment renders
no-reference or “blind” IQA algorithms the most challenging class in this comparison.
Statistical image analysis influenced early efforts in this domain. As Srivastava et al.
stated:

“Even though images are expressed as elements of a large vector space (e.g.
the space of rectangular arrays of positive numbers) [...], the subset of inter-
esting images is rather small and restricted”. [29]

Natural Scene Statistics is an umbrella term for algorithms which assume that per-
ceptual distortions can be measured as deviations of certain statistical properties from
those observed on unimpaired images. Moorthy et al. [30] presented an approach working
in two modular stages that aims to identify the prevailing distortion first and assesses
its severity afterward utilizing a tailored metric. BIQI, their reference implementa-
tion, employs a support vector machine that classifies wavelet coefficients, using the
LIVE database [4] for training and evaluation. The “Distortion Identification-based
Image Verity and INtegrity Evaluation Index” (DIIVINE), also published by Moorthy
et al. [31] superseded BIQI’s performance by far. The fundamental approach of corre-
lating transform-domain coefficients with MOS values is also used, with modifications,
in [32–34] and [35].

Machine Learning The increase in computing power during the last years enabled the
application of machine learning models to problems that were previously too complex to
solve. Neural networks as a prominent example achieve outstanding results, e.g. close
to human performance on object recognition tasks [19,36].
Kang et al [37] first experimented with convolutional neural networks for the task of
image quality assessment. Operating on 32× 32 pixel patches as an input, their shallow
architecture consists of one convolutional layer with 50 kernels of 7×7 pixels, followed by
simultaneous min- and maxpooling and a three-layered fully-connected predictor. Their
method set a new state of the art for blind IQA and performed comparably to the best
performing full-reference methods on the LIVE dataset.

In subsequent years, this approach has been further refined: Bosse et al. [38] proposed
a deeper structure of ten convolutional layers, employing maxpooling after each second
layer. A two-layered, fully connected head was used to estimate quality scores. Training
was conducted on randomly sampled 32×32 pixel patches taken from the LIVE dataset.

Quality annotated datasets are rather small with at most a few thousand images in
total, thus insufficient to train very deep neural networks from scratch. Bianco et al. [39]
proposed transfer-learning [40] CNNs that were originally intended for classification tasks
and have been pre-trained on the ImageNet dataset.
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The practice of replacing or randomly re-initializing the fully-connected layers at the
head of the network is reasonable:

“the first layers of CNNs learn features similar to Gabor filters and color
blobs that appear not to be specific to a particular image domain, while
the following layers of CNNs become progressively more specific to the given
domain” [40]

The recently proposed DeepRN [12] by Varga et al. refines and extends this principle: a
fine-tuned ResNet-101 [41] generates 2048 feature maps to which spatial-pyramid pooling
[42] is applied in order to obtain a fixed-size output vector independent of the input
image’s resolution. This vector is normalized and fed into a fully connected, five-layered
network that is trained not just to predict a single quality score per image, but the
distribution of subjective votes [16] on a 5 point ACR [43] scale.

2.2.4 Reduced-Reference IQA

An IQA method belongs to this class if it does not rely on the availability of a reference
image, but requires additional information besides the image under assessment. This
includes methods that adapt their prediction based on knowledge about the predomi-
nant distortion type or that are designed to work exclusively on images affected by one
specific distortion. Wang et al. [44] proposed an algorithm able to identify blurring and
blocking effects introduced by JPEG compression that was intended as a precursor for
the development of no-reference methods.

Furthermore, one can argue that a whole set of NR-IQA algorithms actually belongs
to this category, despite being advertised differently by the respective authors. Methods
that were developed with a specific artificially distorted database in mind, e.g. [30, 31],
which work by identifying the predominant distortion within a known set of possible
distortions. This constitutes a high degree of prior knowledge and one has to argue why
such an algorithm would generalize to out-of-dataset inputs.

2.3 On the State of the Art and Possible Improvements

We can identify aspects in the field of image quality assessment that have not been
touched upon yet and that would benefit from further research:

Databases: Existing machine learning methods that work on image patches are trained
assuming that global MOS scores are valid throughout entire images from which training
data is sampled [38]. We create a novel dataset of 32.000 individually quality-annotated
image patches for training and testing of machine learning based IQA methods.

Locality: Most quality assessment algorithms proposed in the literature calculate a
global score per image and are incapable of predicting local quality scores. Approaches
that are theoretically able to do so, e.g. [38], are only evaluated on a global scale. We
develop a local quality predictor based on a convolutional neural network. For validation,
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we furthermore propose a second dataset of 125 images that were sampled from KonIQ-
10k [16] and locally annotated for perceived visual quality in a crowd study.

Variable Compression: As an application, we use the quality maps created by our local
model to substitute saliency maps generated by eye-tracking studies in the lab. They
serve as a bit allocation scheme in an extended JPEG [45] compressor, enabling the fully
automated application of a variable image codec that was previously developed by our
group [2].

3 Concepts and Assumptions on Local Image Quality

This section aims to introduce the philosophy behind our understanding of image quality
and explains what we are trying to quantify in the subsequently presented experiments.
Particular domains such as e.g. medical imaging may have obvious measures for the
value of an image, such as the resolution of an MRI scan. The same does not necessarily
hold for natural images in the sense of photography. While research on the human vi-
sual system and the psychophysiological processes involved in visual perception [28, 46]
is relevant for this topic, we chose to approach perceptual image quality from a data
scientific perspective.

Humans mean opinion scores on image quality correlate highly between subjective stud-
ies, as shown by Hosu et al. [47]. Quality has been studied extensively as an agreement
based property on a global, per-image scale. We make the following assumptions to
study perceptual quality on smaller image regions:

1) A single, isolated pixel can not hold quality information.

2) Quality is a reasonable concept only on sufficiently large image patches.

3) Image content can influence perceived quality.

Determining an appropriate patch size involves a tradeoff: an IQA method that is capa-
ble of assessing smaller patches allows higher spatial precision for image segmentation
and is likely of lower computational complexity due to the lower input dimensionality.
However, small patches are more difficult to assess for humans: Figure 2 depicts a source
image with exemplary choices for patch sizes. The smallest size of 32 × 32 pixels was
used in an IQA method by Bosse et al. [38]. The largest size of 224 × 224 pixels is the
standard input size for ImageNet classification models. We hypothesize that judgments
of quality are affected by expectations on how content should be depicted in images.
Large patches may introduce related biases due to e.g. preferences on the motif. In this
sense, we tried to choose a patch size that is as small as possible but as large as required.

We found 64× 64 pixel patches sampled from 1024× 768 pixel images to be a resolution
that is assessible for humans but that does not reveal unnecessary content cues. This
ad-hoc choice is an aspect of our work that is likely to be not defendable against all
objections, but at this point a decision had to be made.
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(a) 32× 32 (b) 64× 64 (c) 128× 128 (d) 224× 224

Figure 2: Content perceptibility relative to patch size.

3.1 KonPatch

Based on our assumptions on local image quality we created KonPatch, which is a novel
dataset of 32.000 individually annotated 64 × 64 pixel patches that is intended as a
training set for local quality prediction models. The dataset was generated as follows:
we randomly selected 500 images from KonIQ-10k [16]. Those were excluded from the
remaining dataset to guarantee that subsequent experiments are never carried out on
images which our local predictor was (partially) trained on. From each of the selected
500 images, we sampled 64 patches at random locations. This set of 32, 000 patches was
annotated with binary labels in an attempt to flag patches that look not indicative of
being sampled from an high-quality image. Initially, a lab experiment with only one vote
per patch was conducted. Each patch p has an associated source image I in KonIQ-10k
with a global MOS score mos(I). This allows building a continuously rated dataset on
top of a binary classification study, by defining the score S of a patch p as follows:

13



S(p) =

{
mos(I) if p was marked as high quality

0 otherwise
(3)

Additionally, a crowd experiment was conducted on this dataset, but the results were
not used in this work. Histograms of the score distributions for both versions of the
dataset are given in Section 9.1, however a thorough comparison is left as future work.

4 Neural Networks for Image Quality Assessment

This section introduces the concepts used to build a local, no-reference image quality
predictor. The assumption is that image quality can be modeled as a function

ψ : C 64×64×3 → R, p 7→ ψ(p)

where C = {0, . . . , 255} is the set of possible values for each channel of a 24 bit RGB im-
age. Instead of defining ψ directly, we will use a machine learning approach to construct
an approximation with respect to the KonPatch dataset.

4.1 Neural Networks

Neural networks are biologically inspired computational models build of simple numeric
processing units that mimic the functionality of neurons as found in the human brain. A
neuron u takes a vector x ∈ Rn as an input and returns a value y ∈ R, more specifically:

u

x1

xn

y u(x) = ϕ

(
n∑
i=1

ŵixi + b

)
(4)

Figure 3: Schematic and specification of a neuron.

where ŵ ∈ Rn is a weight vector, b ∈ R is a bias and ϕ : R→ R is a non-linear activation
function. This representation can be simplified by eliminating the distinction between
weights and bias by introducing an ‘always-on’ input and concatenating the bias with
the weight vector:

ŵ>x+ b =
[
b w>

] [1
x

]
In the context of a neuron η, the terms ‘weights’ and ‘network input’ subsequently refer

to the augmented vectors wη :=
[
b ŵ>

]
and inη :=

[
1 x

]>
. Considering the affine

transformation as the network input function of a neuron is a convenient perspective for
cases where w is not treated as a given model parameter, e.g. in model optimization.

fnet : R(n+1) × R(n+1) → R, (in, w) 7→ w>in (5)
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Definition 2. A neural network is a directed graph (N , C), where N is a set of neurons
and C ⊆ N ×N is a set of connections between neurons.

This structure allows deducing the concepts of successor and predecessor sets for a neuron
u, which are defined as:

succ(u) = {v|(u, v) ∈ C}
pred(u) = {v|(v, u) ∈ C}

One requires a partition1 of N into three subsets such that

N = Nin ∪Nhidden ∪Nout

A neuron is called input, hidden or output neuron according to the partition it is as-
sociated with. All neurons in a neural network have to respect the underlying graph
structure such that the dimensions of the network input functions are compatible.

One identifies the activation level of input neurons componentwise with the input
vector x ∈ Rn that is presented to the network by setting ui = xi for all ui ∈ Nin.
Analogously, the network’s output y ∈ Rm is defined as the activations of the output
neurons by setting yj = ηj for ηj ∈ Nout.

u0,0

u1,0

u2,0

u0,1

u1,1

u2,1

u0,2

u1,2

u2,2

x0

x1

x2

y0

y1

y2

Figure 4: A fully-connected neural network with three layers.

Under mild assumptions on the activation functions, a multi-layer network can approx-
imate a large class of functions up to arbitrary precision given that it is equipped with
sufficiently many neurons, as shown by Hornik [48]. Before discussing how to construct
suitable weights, we will introduce an extension to plain neural networks that is better
suited for image processing tasks.

4.2 Convolutional Neural Networks

A drawback of fully-connected neural networks is that they do not exploit the structure
of images. Local relationships between neurons are not spatially independent and rel-
evant patterns have to be represented by weights and biases at all possible locations.
Convolutional Neural Networks were proposed by Lecun in 1995 [49].

1Therefore Nin,Nhidden and Nout are non-empty and mutually exclusive and Nhidden∩ (Nin∪Nout) = ∅
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They entail a concept of spatial proximity that can be understood from two perspectives:

a) Convolution of the input feature map with a kernel in the spatial domain.

b) Weight-sharing between neurons at different positions within a layer.
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Bi,j = ϕ(A ∗Ψ) (6)

= ϕ
( k∑
u=0

k∑
v=0

Ai+u,j+v ·Ψu,v

)

Figure 5: Schematic drawing of a convolutional layer with a single 3× 3 kernel.

Convolutional layers accept an input tensor A ∈ Rm×n×d and convolve it spatially with
a ‘kernel’ Ψ ∈ Rk×k×d. Despite the name, this operation is usually implemented as cross-
correlation in most libraries. A non-linear activation function ϕ is applied to the result,
yielding an output ‘feature map’ B. Figure 5 illustrates this process, for A ∈ R4×5 and
Ψ ∈ R3×3. Formula (6) describes the performed computation. It is common to perform
this operation with multiple kernels per layer, whereafter the resulting two-dimensional
feature maps are concatenated along a third dimension (stacked). Zero-padding can
be used to prevent decreasing the spatial dimension in each layer as required by the
cross-correlation, but is omitted in Figure 5 for simplicity.

Pooling A pooling layer performs a spatial dimensionality reduction of the feature maps
it receives as an input. This is conventionally done by partitioning the input feature
maps into disjoint submaps of quadratic shape, however non-quadratic and overlapping
submaps are possible. A function ϕ : Rm×n → R is applied to each submap of shape
m×n independently. Pooling does neither constitute a recombination of values between
feature maps nor change the number of feature maps.
As Goodfellow states, “pooling helps to make the representation become approximately
invariant to small translations” [50]. Many tasks, such as image quality assessment, do
not require pixel-level accuracy. Pooling can therefore reduce the computational cost
by deliberately ignoring irrelevant information. A popular implementation is maxpool-
ing, which replaces feature map activations in a certain environment with the maximal
present activation. Other popular choices include for example minpooling and average-
pooling.
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In applications with fixed input- and output dimensions it is common to combine con-
volutional and fully-connected layers. This is implemented by vectorizing the output
feature maps of the last convolutional layer and passing them as an input to subsequent
convolutional layers.

3 2 4 1

7 1 2 1

4 4 2 5

1 2 1 0

7→
7

4

4

5

Figure 6: Maxpooling with a 2× 2 window and a stride of 2.

4.3 Parameter Estimation from Training Examples

So far, our framework allows applying neural networks only in a ‘forward’ fashion as-
suming given weights for each neuron. This section introduces the concepts that enable
to approximate a function by choosing a neural network architecture and ‘learning’ from
examples.

4.3.1 Measuring Model Error in Supervised Learning

Supervised learning [50] is an approach to create a machine learning model M : X → Y
that relies on the availability of training examples

L = {(x1, y1), . . . , (xn, yn)}

For each data point xi there exists a label yi that represents the desired output value.
Creating sufficiently large datasets is a burden that usually renders supervised learning
costly, but it has shown to achieve outstanding results in domains such as object recog-
nition [51]. In KonPatch, data points and labels are given as 64× 64 pixel RGB patches
and quality scores in [0, 1].

In supervised learning, a given model instance M is repeatedly evaluated for its ‘fitness’
with respect to L in terms of a loss function2

JL : F (X,Y )→ R+
0 , M 7→ JL(M)

which is required to be representable in terms of pointwise losses as

JL(M) =
∑

(x,y)∈L

eY (M(x), y) (7)

2 F (X,Y ) is the space functions X → Y

17



where eY : Y × Y → R+
0 is differentiable, and finally, if M is a neural network, in terms

of component-wise losses as

JL(M) =
∑

(x,y)∈L

∑
1≤i≤m

e(ui, yi) (8)

again, e : R × R → R+
0 is a differentiable and u1, . . . , um ∈ Nout. Supervised learning

aims to iteratively minimize JL by adapting the model with respect to the training data.

4.3.2 Gradient Descent

Gradient descent [50] is an approach to minimize a function

f : Rn → R

starting from a point x0 ∈ Rn by performing iterative updates according to f ’s gradient:

xn+1 = xn − λ · ∇f |xn

Where λ ∈ R+ is a parameter governing the step size. Given a neural network M which
is parameterized by a family of weights W and evaluated with respect to a loss function
J on a training set L, it is possible to employ this procedure to approximate

argmin
W

JL(MW )

As this problem is non-convex in general, gradient descent is not guaranteed to converge
to a global optimum. Proposed by Augustin-Louis Cauchy [52] in 1847, the algorithm
has since been extended in multiple ways.

Stochastic Gradient Descent is a variant of gradient descent that is popular in ma-
chine learning, as it helps to circumvent memory limitations. Computing gradients for
all training examples is expensive due to the number of parameters in modern neural
network architectures, the size of the required datasets and the resulting number of inter-
mediate results that have to be stored. Stochastic gradient descent [50,53] approximates
the true gradient at point W on a subset L′ ⊆ L of the dataset:

∇JL(MW )
∣∣
W
≈ ∇

∑
(x,y)∈L′

eY (MW (x), y)
∣∣∣
W

The optimization step is performed with the approximate gradient instead of the true
gradient. The cardinality of L′ is called batch size. For a single training example per
step this procedure is an instance of online learning [54].
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Momentum is an extension that introduces a dependency between optimization steps:

∆xn+1 = λ · ∇f |xn + α∆xn−1

xn+1 = xn −∆xn

The initial momentum is defined as zero by setting ∆x0 = 0 and α ∈ R+ is a parameter
controlling the previous step’s influence on the current step. A discussion of the effect of
this extension on the training of deep neural networks is given by Sutskever et al. [55].

While there exist further independent extensions to gradient descent, e.g. averaging as
proposed by Polyak et al. [56], it is common practice to use an algorithm that combines
multiple improvements, such as Adam [57].

4.3.3 Backpropagation

Explicit gradient computations in neural networks rely on an algorithm known as back-
propagation [58]. In a neural network M = (N , C), we consider a neuron u ∈ N
parameterized by a weight vector wu. By exploiting formula (7) and the linearity of dif-
ferentiation it suffices to examine the loss e := eY (M(x), y) for a single pattern (x, y) ∈ L
in the training set.

The output of u depends on wu only through netu = fnet(inu, wu), thus it is

∇e|wu =
∂e

∂netu

∂netu
∂wu

=
∂e

∂netu
inu (9)

by the chain rule and the fact that fnet(inu, wu) = w>u inu. The first factor depends on
the choice of eY . For regression tasks such as the one imposed by KonPatch, the (mean)
squared error is a common choice.

eY (M(x), y) =
∑

v∈Nout

(yv − outv)2

where outv ∈ R is the activation of output neuron v with corresponding training label
yv ∈ R. Thus, the first factor in Formula 9 can be rewritten as

∂e

∂netu
=

∑
v∈Nout

∂(yv − outv)2

∂netu
= −2

∑
v∈Nout

(
yv − outv

)∂outv
∂netu

(10)

In case u is an output neuron:

∇e|wu = −2(yu − outu)
∂outu
∂netu

inu
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In case u is not an output neuron, the measurable error at the output neurons is
only indirectly dependent on wu and netu through the successor neurons of u. First, we
define an auxiliary variable based on Formula 10:

Let δu =
∑

v∈Nout

(
yv − outv

) ∂outv
∂netu

by application of the chain rule and exchanging the sums:

δu =
∑

v∈Nout

∑
s∈succ(u)

(
yv − outv

) ∂outv
∂nets

∂nets
∂netu

=
∑

s∈succ(u)

δs
∂nets
∂netu

due to the graph structure, outu is one component in ins, which is a parameter to the
affine transformation resulting in nets. Therefore it is

∂nets
∂netu

= wsu
∂outu
∂netu

where wsu ∈ R is the component in ws ∈ R|pred(s)|+1 associated with outu. Consequently,
we arrive at the following formula

δu =
( ∑
s∈succ(u)

δswsu

)∂outu
∂netu

Combined with Formula 10, we get a recursive definition of the gradient:

∇e|wu = −2
( ∑
s∈succ(u)

δswsu

)∂outu
∂netu

inu

The last factor containing partial derivatives depends on the choice of the activation
functions. In our models we use the ReLu and the Sigmoid function for this purpose:

relu(t) = max(0, t)
∂relu

∂t
=


1 if t > 0

0 if t < 0

undefined if t = 0

σ(t) =
1

1 + e−t
∂σ

∂t
= σ(t)(1− σ(t))

We follow the common strategy of defining the ReLu derivative as 0 for t = 0.
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5 Image Quality Models and Experiments

5.1 Patchnet

Patchnet is a convolutional neural network with 14 layers in total. An overview of the
architecture is given in Fig. 7. In this depiction, the leftmost plane represents a 64× 64
pixel input patch. From the left to the right, the data passes 7 convolutional layers
whose output tensors are drawn as cuboids and 3 maxpooling layers, represented by
dashed funnels. The output feature maps of the last convolutional layer are vectorized
and passed to a four-layered, fully connected predictor with 1024, 16, 8 and finally 1
neuron. Rectified Linear Units [59] are used as activation functions except for the last
predictor neuron, which uses a sigmoid function to bound the output to [0, 1].
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Figure 7: Architecture of Patchnet.

5.1.1 Training

We randomly selected 20% from KonPatch for testing, completely excluding those data
points from the training procedure. The remaining set of 25.600 labeled patches was split
in five parts of equal size for cross-validation. For each part, we ran a separate training
instance starting from randomly initialized weights. In the i-th training instance, the
i-th part of the training set was used for validation, while the remaining 4 parts were
used in the actual optimization.
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Figure 8: Training and validation losses per epoch.
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The model starts to overfit after roughly 30 epochs, as the validation loss in Figure 8b
indicates. Since Patchnet is a small CNN compared to recently published architectures
we chose not to use Dropout [60], but early stopping [58] as a mitigation to overfitting.
For this purpose, we stored the model with the best performance on the respective
validation set for each of the five training runs. The resulting model instances show
consistent performance on the test set, as shown in Table 1.

Instance MSE MAE SROCC PLCC

1 0.0611 0.1472 0.677 0.752

2 0.0616 0.1437 0.670 0.748

3 0.0680 0.1493 0.654 0.718

4 0.0711 0.1784 0.649 0.710

5 0.0592 0.1506 0.678 0.757

Table 1: Performance metrics for each instance on the test set.

Patchnet is implemented in Keras [61]. We use an Adam [57] optimizer with a batch
size of 512. Training was performed on Nvidia K40 GPUs with TensorFlow [62] as a
backend.

5.2 Indicator Map Generation

As Patchnet allows predicting perceptual quality on local image regions, it can be applied
to whole images in a sliding window fashion as shown in Figure 9.

(0, 0) (64, 0)

(7δ, 7δ + ∆) (7δ + ∆, 7δ + ∆)
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0
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F(0, 0)

F(7, 7)

Figure 9: Application of Patchnet to whole images.

The parameter δ adjusts the step size between adjacent applications of the model, the
window size ∆ is fixed to 64 pixels due to the model’s specification. For a given input
image of m× n pixels, this procedure results in an output feature map of dimension⌊

m−∆
δ

⌋
×
⌊
n−∆
δ

⌋
A spatial subsampling of the input image can be performed by choosing δ > 1.
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5.3 Local Quality Assessment on Entire Images

There exists no published local image quality database to the best of our knowledge.
In order to gain some insight into the performance of Patchnet, we created an auxiliary
dataset. We sampled 125 images from KonIQ-10k [16] and ran a crowdsourcing experi-
ment to generate local image annotations.

For each image, we asked a total of 30 participants to do either of the following:

a) Place bounding boxes tightly around areas they deemed as being of high quality.

b) Select a checkbox to indicate that there are no high-quality areas in the image.

The quality score for a pixel Ii,j is calculated as the normalized vote count:

qi,j =
#bounding boxes that included Ii,j

#participants
(11)

Areas within an image that were marked multiple times by the same user were counted
only once to prevent unintended peaks from overlapping bounding boxes. Due to their
rectangular shape, bounding boxes can mismatch the area that study participants in-
tended to select. This may yield an imperfect segmentation but it is still chosen over
manual, pixel-wise segmentation for practical reasons. As a mitigation for this problem,
we post-processed the raw feature maps using a Gaussian filter with a standard deviation
of 10% of the image width.

(a) Rectangles indicate selected areas. (b) Post-processed qualitymap.

Figure 10: Creating a local quality dataset.

It is noteworthy that the resulting quality maps indicate “absolute” quality, not just
relative differences within an image, due to the normalization with respect to the number
of study participants. The resulting quality maps are used as ground-truth data to
benchmark Patchnet’s predictions.
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5.3.1 Experimental Results: Local Model Performance

In accordance with our dual understanding of image quality we investigate our model’s
performance not only on isolated patches as done in Section 5.1.1, but also in terms
of predicting quality maps for whole images to examine whether the local predictions
match the perception of humans.

As Patchnet was trained on a different dataset than the one created for this evaluation,
quantifying the model’s performance is not as straightforward as calculating the MSE in
this case. We chose a measure based on the Receiver Operating Characteristic (ROC) [63]
that works as follows: Let G ∈ [0, 1]n×m be a ground truth quality map, P ∈ [0, 1]n×m

a prediction created by applying Patchnet in a sliding window fashion with a stride of
1. The result is centered and zero-padded to match G’s resolution. We apply blurring
using a Gaussian filter with a standard deviation equal to 10% of the image width to
make the predictions more robust against small spatial shifts.
The ground truth map is binarized using a threshold tG by setting it to 1 for all values
greater than tG and 0 otherwise. For a sufficient number of prediction thresholds tP ∈
[0, 1], one can plot the true positive rate versus the false positive rate. The connecting
line of these points is the ROC Curve. The area under this curve is a measure of the
binary prediction performance of the model for a thresholded feature map.
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Figure 11: Boxplot of the AUC versus ground truth thresholds.

Figure 11 presents statistics about the AUC distributions depending on the tG threshold
on the horizontal axis. Each box covers the distribution from the 0.25 to the 0.75 quartile
with a marker for the median. The whiskers extend to the most distant point whose
value lies within 1.5 times the interquartile range. Outliers are represented with dots.
We omitted plotting statistics for tG > 0.8 the AUCs are undefined in this range.
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5.4 Global MOS Prediction by Feature Aggregation

In addition to local quality experiments, we conducted global, per image MOS predic-
tions based on spatially small feature maps. The purpose of this effort is to gain insight
into the relationship between local and global image quality and to compare the perfor-
mance of our model to IQA methods found in the literature.
We applied the sliding window approach depicted in Figure 9 with a stride of 4 to the
remaining 9500 images from KonIQ-10k that were not used for patch selection earlier.
Thus, the obtained feature maps are only 5.5% of the input image’s resolution. We want
to investigate how local quality patterns in images correlate with global scores.

KonIQ-10k LIVE in the Wild

SROCC PLCC SROCC PLCC

Patchnet 0.667 0.573 0.512 0.527

FISH 0.560 0.513 0.500 0.503

Table 2: Correlation coefficients for mean feature map values with global MOS scores.

The correlation coefficients of mean feature map values relative to global MOS scores
are presented in Table 2 as a sanity check. Our model outperforms FISH [64], a wavelet
transform based measure proposed by Vu et al. that is pitched as a local sharpness
metric in the original publication. It was applied to the input images using the same
sliding window approach. The correlations not particularly strong, which is expected
when simply taking the mean of the feature maps.
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Figure 12: DenseNet-169 based meta aggregation model for global MOS prediction.

To predict global quality scores as precise as possible, we trained a neural network on
top of data resulting from a feature combination. Additionally to Patchnet maps, we
utilized FISH sharpness maps and a downscaled grayscale version of the original input
image. Examples are given in Figure 13. We split the dataset of 9,500 images according
to the commonly used 60/20/20 scheme into training, validation and test sets. Training
data was artificially augmented: each of the 5700 images was taken once unmodified
and in three versions that were randomly rotated between +10◦ and −10◦. We cropped
the images to the rectangle of maximal valid size, cutting off any undefined regions that
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were introduced by the rotation. Additionally, all training images were flipped both
horizontally and vertically, which resulted in a total 64,400 feature maps of 82 different
resolutions.

(a) Input image (b) Patchnet feature map

(c) FISH feature map (d) Grayscale / luminance map

Figure 13: Example image and resulting feature maps.

Very deep convolutional neural networks with shortcut connections have been proposed
recently in the image classification community as a mitigation for the common problems
of gradient decay and overfitting [41, 65]. We chose a DenseNet-169 architecture [66]
that was geared towards the task of global MOS regression by exchanging the network
head. Instead of class probabilities, a simple 1× 1 convolutional layer followed by global
maxpooling is used. This head intuitively performs a reweighing of the three-dimensional
DenseNet output feature maps into a two-dimensional global quality map and returns the
highest prediction as a score, which has the advantage that the model is not constrained
to an input of a specific resolution. The structure of this meta aggregation model is
given in Figure 12.
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5.4.1 Experimental Results: Meta-Aggregation Performance

We report the correlation coefficients for the test set predictions of our meta-model in
comparison to traditional, well-known no-reference IQA methods in Table 3. The corre-
lation coefficients for KonIQ-10k are taken from [16] for BIQI, BLIINDS-II, BRISQUE;
DIIVINE and SSEQ and from [12] for the remaining methods. The highest value per
database and correlation measure is printed in bold.

KonIQ-10k LIVE in the Wild

SROCC PLCC SROCC PLCC

BIQI [30] 0.54 0.61 0.29 0.38

BLIINDS-II [32] 0.57 0.58 0.44 0.48

BRISQUE [33] 0.70 0.70 0.59 0.63

DIIVINE [31] 0.58 0.62 0.43 0.46

SSEQ [34] 0.59 0.61 0.45 0.50

Our Model 0.79 0.81 0.60 0.62

Table 3: Correlation coefficients in comparison to traditional NR-IQA methods.

A comparison to recent, machine learning based methods is given in Table 4.

KonIQ-10k LIVE in the Wild

SROCC PLCC SROCC PLCC

KangCNN [37] 0.63 0.67 0.71 0.73

BosICIP [38] 0.65 0.67 0.70 0.70

DeepBIQ [39] 0.90 0.92 0.89 0.91

DeepRN [12] 0.92 0.95 0.91 0.93

Our Model 0.79 0.81 0.60 0.62

Table 4: Correlation coefficients for recent IQA methods.

The horizontal line indicates a paradigm shift. BosICIP and KangCNN work, similar
to the precursor we employed as a sanity check, by averaging a number of predictions
made on spatially small image patches. The lower two methods DeepBIQ and DeepRN
on the other side have access to larger areas, respectively even the whole input image,
and were transfer-learned from ImageNet classification models.
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6 Application: Variable Compression

This section presents an application of Patchnet in the domain of image compression.

6.1 Standard JPEG Compression

As an introduction, a summary of the JPEG [45,67,68] compression algorithm is given. It
takes an RGB image of 24 bits per pixel as an input and initially performs a coordinate
transformation into the YCbCr color space according to [67]. Each unsigned integer
representing a channel component in the image is shifted from range {0, . . . , 28− 1} to a
signed integer in {−28−1, . . . , 28−1−1}. The resulting representation is spatially divided
into non-overlapping 8 × 8 pixel blocks which are transformed into the DCT domain
according to formula (12). Here, fc(x, y) is the value of channel c at position (x, y):

Fc(u, v) =
1

4
CuCv

(
7∑

x=0

7∑
y=0

fc(x, y) cos
(2x+ 1)uπ

16
cos

(2y + 1)vπ

16

)
(12)

where Cu, Cv =

{
1√
2

for u, v = 0

1 otherwise

As “sample values typically vary slowly from point to point” [45], the DCT will accumu-
late most of the signal’s energy in its low-frequency components. The ISO standard [68]
defines separate quantization tables Ql, Qc for the luminance and chrominance channels.
In accordance with RFC2435 [69], a user-provided value q ∈ {1, . . . , 99} is used to scale
these tables coefficientwise according to the following scheme:

s =

{
5000/q for 1 ≤ q ≤ 50

200− 2q for 51 <= q <= 99

Qs(u, v) = (Q(u, v) · s+ 50)/100

With subsequent clipping to the range of 8 bit unsigned integers. In the next step, the
8× 8 matrices of DCT coefficients are quantized by division and subsequent rounding:

F̄c(u, v) =

[
Fc(u, v)

Qs(u, v)

]

Finally, the quantized matrices are reordered in a “zig-zag” sequence and entropy coded
to further reduce file size without additional loss [68].
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(a) Original image at 6.637 bpp. (b) Zero padded Patchnet qualitymap.

(c) Pruned, binarized qualitymap. (d) Cluster centroid positions.

(e) Blurred centroids. (f) Quality level contours at 0.304 bpp.

Figure 14: Intermediate results in variable JPEG compression.
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6.2 Variable JPEG Compression

A restriction of JPEG is the global quality parameter q, which is used to scale the
quantization tables for each 8 × 8 block in an entire image. Enforcing uniform quality
is not always reasonable. Certain areas within an image may be of higher interest to
an observer than others. Our group already proposed an extension to JPEG that al-
lows adjusting this parameter more flexible [2]. The original approach utilizes saliency
information that is gathered in user studies, either as self-reported data in crowd ex-
periments or by collecting ground-truth with an eye tracker in the lab. Each image to
be compressed is viewed by a number of participants, resulting in saliency maps with
per pixel information. The quantization matrices for a given block are scaled according
to its mean saliency value. As the study presented in [2] has shown, this bit allocation
scheme can indeed be used to either reduce file size at an equal perceived quality level or
improve perceived quality at an equal file size. The major disadvantage of this method
is the manual generation of saliency maps.

As an application, we experiment with Patchnet feature maps as a replacement for user-
generated saliency maps. The assumption is that high-quality regions in images correlate
with salient regions. This would be the case e.g. in images where the salient motif, the
region of interest, is properly focussed, while the less relevant background is blurred.

6.2.1 Proposed VarJPEG Algorithm

For a given input image, the proposed algorithm called VarJPEG, works as follows:

i) Feature Map Generation: We apply Patchnet in a sliding window fashion as
depicted in Figure 9 with a stride of 1. The resulting quality map is zero-padded
to match the input image’s resolution.

ii) Feature Map Pruning: Fixation maps as used in [2] are binary matrices that
indicate which pixels in an image were focussed by a participant in an eye-tracking
experiment. While these are sparse due to the limited viewing time per image,
our quality maps can have non-zero activations in large portions of the image. We
prune the feature map by setting all activations in the 90 percentile to 0. The
remaining coefficients with the highest ratings are set to 1. The result is a binary
quality map with at most 10% of the coefficients indicating high quality.

iii) Clustering: As in the original approach, we perform a k-means clustering with
k = 8. The reason to not use the Patchnet feature map directly is the memory
requirement imposed by storing blockwise quality information. This significantly
reduces the bit budget for actual image data. Clustering allows storing the relative
coordinates of the centroids. In combination with the next step, this procedure
serves as a low-overhead approximation of the original Patchnet quality maps.

iv) Blurring: We blur the clustered maps with a Gaussian kernel with a standard
deviation σ equal to 10% of the image width. The values in the blurred feature
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map are normalized to [0, 1]. Note that the resulting quality map M still has the
same spatial resolution as the input image.

v) Quantization: For a given 8× 8 pixel block b in the input image we calculate the
block quality score qb as

qb = round(q̃ + ∆mean(M |b)) (13)

where q̃ is a global quality parameter, mean(M |b) ∈ [0, 1] is the average quality
for block b as given by the corresponding values in M and ∆ = 15 is the difference
between the highest and the lowest possible quality value.

An example of this procedure with intermediate feature maps is shown in Figure 14.

The DCT coefficients in each block are independently quantized according to qb as in
standard JPEG. While we experimented with different values for σ and ∆ in [2], it
remained an open question on how to choose these parameters optimally. The number
of clusters in the k-means and in this approach also the feature map pruning procedure
can arguably be enhanced, but these objectives are left for further research.

6.3 Compression Experiments

To investigate possible bitrate savings with our proposed compression algorithm, we
rely on yet another measure, the Just Noticeable Difference (JND) [70]. We carried out
an experiment on the same 125 images that were sampled from KonIQ-10k in Section 5.3.

For each source image I with bitrate br I , we used a binary search on the global quality
parameter q̃ to generate 100 compressed versions of I with equally distributed bitrates
in [br I , 0.02 · br I ]. Sufficient approximation of the desired bitrates is possible due to q̃
being a floating point variable that is subsequently rounded after adding the scaled local
quality score, as described in Formula 13.

We asked the participants of a crowd study to report their JND threshold. For this
purpose, the source image was displayed as a reference side by side with a test image.
In the initial state, the test image had approximately the same bitrate as the source
image without any visible difference. Participants were asked to slowly degrade the test
image using a slider until they start noticing distortions. Functionality implemented in
JavaScript allowed us to replace the test image according to the slider movements. Using
this setup, we collected 15 votes for each source image.

For comparison, we reran the experiment with test images compressed by standard
JPEG. We compressed each source image with every possible quality level q ∈ {1, . . . , 99}
and assessed the JND using the same crowdsourcing experiment as for our proposed
variable compression algorithm.
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6.3.1 Experimental Results: Savings at the JND Compression Level
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Figure 15: Performance comparison at the 0.25 percentile JND.

In Figure 15, we print the results of this study following the definition of Wang et al. [71],
who defined the JND for a given image as the compression rate were more than 25%
of the study participants noticed a difference to the reference image. The distributions
in the diagrams may give some indication for which types of images VarJPEG may be
superior to JPEG:

a) This diagram compares the bitrates of the VarJPEG compressed images with the
JPEG compressed images who are just noticeably different from the pristine refer-
ence. Markers plotted over the diagonal line denote images that benefit from being
compressed using our approach at JND compression level in terms of bitrate.

b) VarJPEG introduces a constant overhead to store the relative coordinates of the
cluster centroids, depicted e.g. in Figure 14d. This diagram shows the bitrate
difference between standard JPEG and VarJPEG at JND compression level de-
pending on the proportion of the overhead relative to the VarJPEG file size.

c) This diagram shows the difference between standard JPEG bitrates and VarJPEG
bitrates relative to the reference image’s bitrate.
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d) This diagram shows the difference between standard JPEG bitrates and VarJPEG
bitrates relative to the reference image’s mean opinion score in KonIQ-10k.
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Figure 16: Performance comparison at the 0.5 percentile JND.

The diagrams in Figure 16 show the results when taking a different definition of the JND.
Here, we compared the images that already 50% of the study participants reported as
being different from the reference.

7 Evaluation

7.1 Patchnet and KonPatch

A performance evaluation of Patchnet from Figure 8 and Table 1 alone may lead to
pessimism, as the MSE and MAE metrics are comparatively high given that the value
range of the labels is [0, 1]. However, one has to consider the intrinsic difficulties of
the dataset on which these numbers are reported. KonPatch was created making a
compromise: fast subjective assessment of patches using a binary voting procedure with
a single vote per image patch was traded for the introduction of a hard decision boundary.
This is a drawback in our data model, as we assume that humans can distinguish more
than two levels of image quality.
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To re-introduce finer distinctions in the labels, we applied the scoring procedure de-
scribed in Formula 3. A histogram of the resulting dataset is depicted in Figure 17a. It
shows two clearly separated clusters with few training examples in between. Therefore,
though the error metrics would be comparatively high for a classical regression task, this
does not directly impose a problem in our case given that the distance between the two
clusters is large. The resulting Patchnet feature maps, e.g. Figure 13b or Figure 14 may
not be perfectly smooth, but they carry more nuances than a mere binary classification.
From Figure 8a we can argue that Patchnet has sufficient capacity for the given training
task, as all training instances converge towards zero over time. Figure 8b reveals the
problem of overfitting after 30−40 epochs. This behavior is also observed reliably across
training instances. The early-stopped models which performed best on the validation set
transferred to the unseen test set without a decrease in performance as shown in Table 1.
We therefore have reason to believe that Patchnet will generalize well to unseen image
data.

7.2 Local Quality Assessment on Entire Image

As quality prediction on isolated patches is not the primary use case for our model, the
evaluation presented in Section 5.3 is a better measure of its utility. For this task, we
gather statistics on the area under ROC curves for the 125 locally annotated quality
maps from our auxiliary dataset. Each datapoint that is utilized in one of the box plots
in Figure 11 presents the AUC of an image for variable predictor thresholds tP at a fixed
ground truth threshold tG, which is plotted on the horizontal axis. On the one hand,
Figure 11 shows cases where the predictions of our model are off: dots below 0.5 indicate
an image where the false positive rate of the predictions is higher than the true positive
rate at a specific threshold tG. On the other hand, the model performs well besides
these outliers: With mean AUC values around 0.9 and the 0.25 percentile around 0.8
throughout the whole tG range, we can argue that the predictions of our are significantly
better than random guesses for the majority of the images in our auxiliary dataset.

7.3 Global MOS Prediction

To further compare our model against existing image quality assessment algorithms from
the literature, we resort to global MOS predictions due to the lack of an adequate local
benchmark dataset. When comparing the correlation coefficients given in Table 2 and
Table 3, one can see that an aggregation method as simple as taking the mean value
of Patchnet feature maps already outperforms many traditional IQA methods. This
promising result is further improved by the feature-aggregation approach presented in
Section 5.4. Table 4 shows an interesting pattern: Our meta-model slightly outperforms
KangCNN and BosICIP on KonIQ-10k, but is itself outperformed by DeepBIQ and
DeepRN.

While it is possible that this constellation is purely by chance, the performance gap
between these types of models may have a more systematic background: the lower per-
forming examples, including our approach, work by aggregating a global score from local
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predictions on spatially small image regions. The latter two models accept much larger
image regions as an input: DeepBIQ was transfer learned from an ImageNet classifica-
tion model and consequently accepts 224×224 pixel patches. DeepRN goes even further
and is able to assess images independently of their resolution, above a certain minimum,
by using spatial pyramid pooling [42] to reshape the outputs of the last convolutional
layer to a vector of a fixed size. One possible explanation for the performance gain from
using larger image areas for global MOS predictions is that human perception is indeed
influenced by high level features. Our observations suggest that perceptual image qual-
ity is a mixture of local, technical quality e.g. in terms of sharpness and global, content
dependent aspects related to aesthetical preferences and image composition.
Besides hypothesizing about explanations for this performance gap, it is a fact that our
meta model performs close to the state of the art in global image quality prediction.

7.4 Variable JPEG Compression

The expectation on this application of our model was to achieve at least a slight improve-
ment compared to standard JPEG compression. In terms of the utilized JND bitrate
measure, this would mean that at least a subset of the 125 images in our dataset would
have a lower bitrate when being variably compressed up to the point of just noticeable
difference relative to the reference image.

As shown in Figure 15a, this especially not the case for images with very low bitrates at
the JND compression rate. Since our proposed algorithm introduces a constant overhead
to store the cluster centroids, this systematic inferiority may be due to JPEG having a
slightly larger bit budget. Conversely, one could expect our algorithm to work better on
images with higher bitrates at the JND, as the relative impact of the overhead would be
lower. However, this also not the case, as no clear trend regarding the spread of data
points is visible at higher values for brstd and brvar.

Figure 15b shows the bitrate difference between standard JPEG and our algorithm at
the JND compression level on the vertical axis. The horizontal axis depicts the share of
the overhead introduced by our algorithm with regard to the total file size the compressed
image possesses at the JND. We would expect to see a clearer trend in favor of VarJPEG
for images where the relative overhead is less impactful. One can at best speak of a very
slight trend in this regard, but again a clear conclusion is not possible.

Figure 15c plots the bitrate difference versus the reference image’s bitrate. As we
already expected, VarJPEG requires slightly higher bitrates for references images with
lower bitrates. In this plot, the range of very high reference image bitrates actually
shows a slightly favoring picture for VarJPEG, but samples in this area are sparsely
distributed. The last plot in Figure 15d compares bitrate differences with the reference
image’s mean opinion score. The circularly shaped distribution in this image is shifted
slightly downwards in favor of standard JPEG, but doesn’t indicate a clear relationship
with MOS values. Wile the plots in Figure 16 seem to be slightly more in favour of our
method, arguing based on this interpretation leads to being content with the judgments
of less skeptical users, as the definition of the JND is shifted to the point where 50% of
the participants reported a difference.
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The observed underperformance of our implementation in comparison to standard JPEG
was unexpected with regard to the previous success in [2]. One possible explanation is
the JND compression level as a point of comparison or more specifically our approach
to identify this point in our user studies: The Gaussian distributions in our local quality
map deliberately enforce certain regions to be of higher quality than others. Ideally, we
would like the users to be satisfied especially with regions of high interest.

VarJPEG enforces lower quality in image regions where the Patchnet feature map
contains lower coefficients, leading to more artifacts in the background at the same
average bitrate compared to standard JPEG. Even if participants reported JND levels
honestly and accurately, the focus is set wrongly to the background. The interface used
in the crowd study and a relatively high choice for the maximum quality difference
likely contributed to this issue, as fast deferring of the slider visualizes early distortions
in low-quality regions with a flickering effect. Overall, the plots show that there exist
cases in which VarJPEG achieves better performance than standard JPEG, even in the
chosen metric. Further optimization of the algorithm to achieve more systematic benefits
however remains an open research topic.

8 Conclusion

This thesis covers the whole pipeline from task specific data generation throughout the
construction of a current machine learning model to an elaborate performance analysis
with regard to different aspects and usecases. The contributions include a novel, local
image quality assessment database and a reference implementation to solve this task.
We managed to create a model that is able to predict human judgements on the vaguely
defined concept of local image quality.
With emerging technologies like virtual reality and ultra high resolution video the ques-
tion of how to provide the best possible experience for a given bandwidth will become
even more urgent. Though we are still far from understanding how exactly the per-
ception of quality in multimedia works, approaches like the one presented in this thesis
are promising models for the meanwhile and will likely receive more attention from the
research community in the future.
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9 Supplementary Material

9.1 KonPatch: Quality Score Histograms
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Figure 17: KonPatch quality score histograms.

The crowd study we conducted on KonPatch was designed as follows: We asked 10
participants per patch for a binary classification whether the presented image patch
looks indicative of being sampled from a high-quality image. The histogram shown in
Figure 17b depicts the distribution of quality scores that are generated by taking the
fraction of positive answers relative to the total number of answers per patch.
This procedure creates a totally different distribution of scores compared to the lab
results, where negative answers are mapped to a score of zero and positive answers
to the mean opinion score of the source image that the patch was sampled from, as
described in Formula 3.
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9.2 KonPatch: Examples

Figure 18: Patches marked as indicative of being sampled from a high quality image.

Figure 19: Patches marked as not indicative of being sampled from a high quality image.
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[52] Augustin Cauchy. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[53] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, pages 400–407, 1951.
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lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

43



[63] Tom Fawcett. ROC graphs: Notes and practical considerations for researchers.
Machine Learning, 31(1):1–38, 2004.

[64] Phong V. Vu and Damon M. Chandler. A fast wavelet-based algorithm for global
and local image sharpness estimation. IEEE Signal Processing Letters, 19(7):423–
426, 2012.

[65] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway net-
works. arXiv preprint arXiv:1505.00387, 2015.

[66] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolu-
tional networks. Computing Research Repository, arXiv: abs/1608.06993, 2016.

[67] ITU-T Recommendation T.871 - Information technology - Digital compression and
coding for continuous-tone still images: JPEG File Interchange Format (JFIF),
International Telecommunication Union. 2011.

[68] ITU-T Recommendation T.81 - Information technology - Digital compression and
coding for continuous-tone still images: requirements and guidelines, International
Telecommunication Union. 1992.

[69] L. Berc, W. Fenner, R. Frederick, S. McCanne, and P. Stewart. RTP payload format
for JPEG-compressed video. RFC 2435, RFC Editor, October 1998.

[70] Joe Yuchieh Lin, Lina Jin, Sudeng Hu, Ioannis Katsavounidis, Zhi Li, Anne Aaron,
and C-C Jay Kuo. Experimental design and analysis of JND test on coded im-
age/video. In Applications of Digital Image Processing XXXVIII. International
Society for Optics and Photonics, 2015.

[71] Haiqiang Wang, Ioannis Katsavounidis, Jiantong Zhou, Jeonghoon Park, Shawmin
Lei, Xin Zhou, Man-On Pun, Xin Jin, Ronggang Wang, Xu Wang, Yun Zhang,
Jiwu Huang, Sam Kwong, C. Kuo, Yun Zhang, Jiwu Huang, Sam Kwong, and C.-
C. Jay Kuo. Videoset: A large-scale compressed video quality dataset based on
jnd measurement. Journal of Visual Communication and Image Representation,
46:292–302, 2017.

[72] David E. Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin. Back-
propagation: The basic theory. Backpropagation: Theory, Architectures and Appli-
cations, pages 1–34, 1995.

[73] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng.
Self-taught learning: transfer learning from unlabeled data. In 24th International
Conference on Machine learning, pages 759–766. ACM, 2007.

[74] Deepti Ghadiyaram and Alan C Bovik. Massive online crowdsourced study of
subjective and objective picture quality. IEEE Transactions on Image Processing,
25(1):372–387, 2016.

44



[75] Martin Meyer. Signalverarbeitung: Analoge und digitale Signale, Systeme und Fil-
ter. Springer-Verlag, 2006.

45


