Universität Konstanz

Methodologies for Large-Scale Crowdsourced Visual Quality Assessment

Oliver Wiedemann

Workshop on Large-Scale Subjective IQA, 14.12.2022

Project Goals and Overview

- 1. Understand visual quality
 - (Mostly) technical quality rather than aesthetics
- 2. Model and predict perception
 - What is the quality of a given image/video?
- 3. Enhance codecs and compression methods
 - Apply our insights to improve UX

Quality is a consensus-based property!

Crowdworkers Proven Useful

Crowd workers proven useful: A comparative study of subjective video quality assessment

Dietmar Saupe, Franz Hahn, Vlad Hosu Igor Zingman, Masud Rana Department of Computer and Information Science University of Konstanz, Germany Shujun Li Department of Computer Science Faculty of Engineering and Physical Sciences University of Surrey, UK

Published at QoMEX 2016: [1]

Crowdworkers Proven Useful

Fig. 1. Scatter plots comparing three assessments of DMOS values for 60 paired comparisons of video quality. Left: Crowd study 1 (strict quality control) versus DMOS derived from lab-based MOS values. Right: Crowd study 2 (mild quality control) versus lab. The Pearson correlation coefficients are 0.9687 (left), 0.9661 (right).

Selected Konstanz Image Quality Datasets

KonlQ-10k [2]

- 10,073 authentically distorted images
- 1.2 million ratings, 1459 crowd workers

KADID-10k [3]

- 10,125 artificially distorted images
- 303,750 ratings by 2209 crowd workers

IQA-Experts-300 [4]

- 300 images, naturally + artificially dist.
- 70\$ crowd \approx 400\$ pro freelancer ratings

KonFIG-IQA [5]

- Artifact boosting
- Comparative study with score reconstruction

The Baseline: ACR

- Requires participant training
- Fast response per user and image
- Requires many votes per image
- ITU-T Recommendation P.913
- KonlQ-10k: ACR via crowdflower

ACR: MOS vs Variance "Ripples"

SOS Plot for KonlQ-10k

note the lower edge of the scatterplot

Distortion Types and Magnitudes

Pairwise Comparisons

Unimpaired original.

JPEG compression (qp = 10).

Pairwise Comparisons

Raw experiment data will be a count matrix of preferences

$$C_{i,j} = \begin{cases} \text{# of votes preferring } i \text{ over } j \text{ for } i \neq j \\ 0 \text{ otherwise} \end{cases}$$

How do we get a reasonable scale from this?

Thurstonian Reconstruction

$$X_i \sim \mathcal{N}(\mu_i, \sigma_i^2), \qquad X_j \sim \mathcal{N}(\mu_j, \sigma_j^2)$$

Thurstonian Reconstruction

Thurstone proposed five versions with increasingly strict assumptions.

Case V: X_i and X_j are uncorrelated with equal variances.

Setting $\sigma_i^2 = \sigma_i^2 = \frac{1}{2}$ leads to a simple closed form solution:

$$\hat{\mu}_{ij} = \Phi^{-1} \left(\frac{C_{i,j}}{C_{i,j} + C_{j,i}} \right)$$

To align multiple see [6], generally an optimization problem:

$$\arg \max_{\mu} L(\mu|C)$$
 sublect to $\sum_{i} \mu_{i} = 0$

PCs with Multiple Options

Partitioned Quality Difference Distribution

ACR vs PC

	ACR	PC				
1	Different understandings of quality,	Independent of a nominal				
	large variances for ratings	interpretation, faster responses				
2	Saturation effect at range boundaries	No saturation effect by design				
	ACR scales are ordinal,	Peconstructed values are				
3	difference in MOS between items does not	on an interval scale				
	translate well to perceptual difference	on an interval scale				
4	Lack of meaningful units of measurement	Pair comparisons in units of JND				

Just Noticeable Difference

Artifact Boosting

Artifact Boosting

KonX: Cross-Resolution Assessment

Scaling affects subjective perception.

Image Scale vs CNNs

 $256\times192\text{px}$

 1024×768 px

GradCAMs and predicted object classes change with scale.

Careful with "Resolution"

The IQAVi Interface

SOS Plots for Authentically Distorted DBs

KonX: A Cross-Resolution IQA Benchmark

Sources	Flickr (KonIQ-10k) and Pixabay						
#Images	210 from each source						
Resolutions	2048×1535 px, 1024×768 px, 512×384 px						
Participants	19 in the full study						
Annotations	2 per image at each resolution, 45360 in total						

KonX MOS Scatterplots

Correlations between KonX and KonIQ-10k

SRCCs Between KonX Participants by Resolution

Larer images might be easier to assess.

Intraclass Correlation Coefficients

Agreement of individual scores per images is high in KonX.

Effnet-2C-MLSP

Training on Remapped KonIQ-10k

Reduces MAE by 12.8%.

Cross-Database Model Performance

Models	Konl	Q-10k	Live Ch	allenge	SPAQ		
	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC	
LinearityIQA	0.9299	0.9415	0.8114	0.8404	0.8442	0.8422	
Effnet-NIMA	0.7635	0.7788	0.6886	0.7269	0.7896	0.7936	
IRN-1C-MLSP	0.8601	0.8932	0.8005	0.8310	0.8523	0.8553	
Effnet-2C-MLSP	0.9490	0.9596	0.8327	0.8595	0.8641	0.8641	

Results on CRIQ Splits

Model	Training Resolution		SRCC				PLCC						
		512 ×	384 px	84 px 1024 × 768		2048 × 1536		512 × 384 px		1024 × 768		2048 × 1536	
		KonlQ	Pixabay	KonlQ	Pixabay	Koniq	Pixabay	Koniq	Pixabay	Koniq	Pixabay	Koniq	Pixabay
KonCont	512	0.8807	0.3047	0.8264	0.2703	0.6821	0.3112	0.8535	0.3049	0.7522	0.2670	0.6016	0.2690
κοποερι	1024	0.8251	0.2658	0.8888	0.4175	0.8165	0.4518	0.6968	0.2658	0.8845	0.4201	0.8420	0.4926
	512	0.8506	0.3101	0.7648	0.3739	0.5505	0.4010	0.8357	0.3682	0.7664	0.4118	0.5928	0.3972
EIIIIet-INIMA	1024	0.8568	0.2506	0.8840	0.3184	0.8185	0.3925	0.8449	0.3105	0.8849	0.3895	0.8423	0.4503
Lincority(OA	512	0.9436	0.3818	0.9111	0.3994	0.7611	0.4485	0.9416	0.4681	0.9068	0.4670	0.7933	0.4859
LineantyiQA	1024	0.9141	0.3849	0.9452	0.4519	0.9023	0.4935	0.9087	0.4311	0.9435	0.4813	0.9115	0.5291
	512	0.9279	0.3197	0.9093	0.3490	0.8072	0.4501	0.9274	0.4155	0.9046	0.4355	0.8326	0.4967
IRIN-IC-IVILOP	1024	0.8949	0.3117	0.9320	0.4190	0.9076	0.5037	0.8992	0.4003	0.9313	0.4876	0.9160	0.5596
	512	0.9273	0.3955	0.9056	0.4457	0.7900	0.5149	0.9248	0.4689	0.9035	0.5063	0.8252	0.5391
Effnet-2C-MLSP	1024	0.8918	0.3762	0.9358	0.4844	0.9105	0.5415	0.8957	0.4443	0.9361	0.5422	0.9228	0.5857
	both	0.9234	0.4058	0.9426	0.4715	0.9276	0.5132	0.9251	0.4783	0.9437	0.5220	0.9325	0.5596

RMSE vs SROCC on KonX

References

- [1] Dietmar Saupe, Franz Hahn, Vlad Hosu, Igor Zingman, Masud Rana, and Shujun Li. Crowd workers proven useful: A comparative study of subjective video quality assessment. In <u>QoMEX 2016: 8th International Conference on Quality of</u> Multimedia Experience, 2016.
- [2] V. Hosu, H. Lin, T. Sziranyi, and D. Saupe. Koniq-10k: An ecologically valid database for deep learning of blind image quality assessment. IEEE Transactions on Image Processing, 29:4041–4056, 2020.
- [3] Hanhe Lin, Vlad Hosu, and Dietmar Saupe. Kadid-10k: A large-scale artificially distorted iqa database. In <u>2019 Tenth</u> International Conference on Quality of Multimedia Experience (QoMEX), pages 1–3. IEEE, 2019.
- [4] Vlad Hosu, Hanhe Lin, and Dietmar Saupe. Expertise screening in crowdsourcing image quality. In <u>QoMEX 2018: Tenth</u> International Conference on Quality of Multimedia Experience, 2018.
- [5] Hui Men, Hanhe Lin, Mohsen Jenadeleh, and Dietmar Saupe. Subjective Image Quality Assessment with Boosted Triplet Comparisons. arXiv e-prints, page arXiv:2108.00201, July 2021.
- [6] Kristi Tsukida and Maya R Gupta. How to analyze paired comparison data. Technical report, Washington University, Seattle, Dept. of Electrical Engineering, 2011.