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Abstract—Computer vision models for image quality assess-
ment (IQA) predict the subjective effect of generic image degra-
dation, such as artefacts, blurs, bad exposure, or colors. The
scarcity of face images in existing IQA datasets (below 10%) is
limiting the precision of IQA required for accurately filtering
low-quality face images or guiding CV models for face image
processing, such as super-resolution, image enhancement, and
generation. In this paper, we first introduce the largest annotated
IQA database to date that contains 20,000 human faces (an
order of magnitude larger than all existing rated datasets of
faces), of diverse individuals, in highly varied circumstances,
quality levels, and distortion types. Based on the database, we
further propose a novel deep learning model, which re-purposes
generative prior features for predicting subjective face quality.
By exploiting rich statistics encoded in well-trained generative
models, we obtain generative prior information of the images
and serve them as latent references to facilitate the blind IQA
task. Experimental results demonstrate the superior prediction
accuracy of the proposed model on the face IQA task.

Index Terms—Image quality assessment, face quality, subjec-
tive study, GAN, generative priors.

I. INTRODUCTION

WHILE the performance of blind image quality as-
sessment (BIQA) methods on broad-domain user-

generated images (authentic distortions) has improved signifi-
cantly in recent years with in-the-wild datasets such as KonIQ-
10k [1] and SPAQ [2], their performance on face images has
not been fully explored yet. We assume that the performance
of existing IQA methods on images of faces is limited due to
the following factors:

1) Existing IQA databases contain few images of faces,
for instance, two of the largest datasets, KonIQ-10k
[1], and SPAQ [2] contain around 2% and 10% faces,
respectively.

2) People are more sensitive to image degradations that
affect faces than general image categories, due to the
specialized processing dedicated to faces in the human
visual system [3], [4].
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3) There is inherent perceptual feature shift when training
IQA models on general image categories and testing on
faces.

Consequently, there is a need for IQA datasets that contain
more subjectively rated face images. Note that our IQA on
human faces is different from face image quality assessment
in biometrics community [5], [6], where quality is a form of
utility for biometric systems, i.e., recognition or identification
of a face image. We aim to create predictive models (metrics)
for generic face image quality assessment, where the quality
relates to the level of degradation introduced by an imaging
system during capture, processing, storage, compression, and
display of face images [7], [8].

There are several potential applications of generic face
image quality assessment (GFIQA):

1) In terms of generalized IQA, GFIQA can be used to im-
prove model predictions. It has been demonstrated that
the human visual system (HVS) is extremely sensitive
to faces [9], [10]. An accurate face IQA metric could
benefit the generalized IQA task.

2) In terms of face recognition, GFIQA can be used to
boost face recognition performance. Face images with
quality scores below a set threshold can be rejected
during the acquisition process, which decreases the error
rate in face recognition applications.

3) GFIQA can also be used in practical applications such
as album optimization. For example, when importing
photos from a digital camera, memory card, scanner,
or computer hard disk to the digital photo album, face
image quality can be used as a reference to make
acceptance or rejection decisions.

In order to make accurate objective computations on generic
face IQA, we further proposed a novel model to fulfill the
task. Distinct from previous models [11]–[13], we in the first
exploited deep generative priors to facilitate quality prediction.
The motivation lying behind is that in pre-trained generative
models, rich statistics of natural images are encoded, which
could be utilized as latent references to the blind IQA task.
By combining both distorted and latent reference features,
accurate quality prediction results can be achieved.

The main contributions of this paper are:
1) We created the largest IQA database of human faces in

the wild called the Generic face image quality assess-
ment 20k database (GFIQA-20k). We extracted 20,000
faces from 1 million YFCC100M [14] images to ensure
the diversity of (1) the individuals depicted, (2) the
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image quality, and (3) distortion types, as well as (4) the
contexts in which the images were captured. Selected
freelancers with expert domain knowledge rated the
quality of each image on average 12 times.

2) We validated the reliability of freelancers by analyz-
ing their accuracy on gold-standard questions and self-
consistency correlation on repeated questions. We val-
idated the effectiveness of our dataset GFIQA-20k by
transfer learning. High prediction correlation (over 0.95
SRCC) can be achieved using different baseline models.

3) We proposed a novel quality prediction model which is
the first to exploit deep generative priors to facilitate
the BIQA task. Using the rich statistics encoded in pre-
trained generative models, we obtain prior preserved
images and serve them as latent references to further im-
prove prediction accuracy. Experimental results verified
the effectiveness of the proposed model. The database
and code will be made available at http://database.
mmsp-kn.de/gfiqa-20k-database.html.

II. RELATED WORKS

A. Quality Assessment of Face Images

There are two main research areas that deal with the quality
of face images. The first, and most developed field, comes
from the biometrics community for assessing the face quality
for face recognition systems. This is most often denoted by
face image quality assessment (FIQA). The second is GFIQA
and relates to general image quality assessment dealing with
perceptual image degradation. A in-depth discussion about
the differences between the two fields has been presented by
Schlett et al. [6].

FIQA has attracted increased attention in the face recogni-
tion community [5], [6]. Earlier works proposed the quality
of a face image as its similarity to its reference face image
with respect to multiple factors such as pose, expression, illu-
mination, occlusion. For example, Sellahewa and Jassim [15]
measures image quality in terms of luminance distortion by
comparing a face input image against a known reference
image. However, such approaches are hard to apply since
they have to consider every possible factor manually and
reference face images may not be available in an unconstrained
environment.

In contrast, learning-based approaches, where the target face
quality is defined in some manner to be indicative of face
recognition performance, are more favorable. These learning-
based approaches can be grouped according to the way the
ground truth quality values are labeled. In most approaches the
ground truth quality values are determined computationally.
For instance, Bharadwaj et al. [16] assigned qualities to face
images by using two commercial off-the-shelf face recognition
systems, where a face image is labeled by a good quality
value if it matches well. Chen et al. [17] assumed face images
in dataset A have better quality than those in dataset B for
a face recognition method if the recognition performance of
this method on A is better than on B. Although there exists
work that labels face quality manually, e.g., in binary class
(good or bad) [18], Best-Rowden and Jain [19] conducted the

first subjective face quality assessment study. By conducting
a small set of pairwise comparison of 13,233 face images,
taken from [20], the quality ratings all images were inferred
with matrix completion.

While there is significant development of FIQA, there is no
study on GFIQA. To the best our knowledge, except for the
small number of face images present in existing IQA datasets,
our work is the first study of this kind dedicated exclusively
to face images.

B. Generative Priors
With the rapid development of generative models, GANs

become capable of effectively learning the natural image man-
ifold and synthesizing high resolution images with pleasant
visual quality [21]–[24]. With pre-trained GAN models, the
well-learned image manifold is further explored to promote
image manipulation and restoration tasks [25]–[30], referred
to as generative priors. In order to utilize the rich semantic
information encoded in generative models, input images are
first mapped back to the intermediate features or latent space
of pre-trained GANs [31], image manipulation or restoration
tasks are then facilitated by feeding forward the inverted
feature or code to generators.

There are typically two approaches to invert GAN models,
optimization-based and learning-based. Optimization-based
methods optimize the input code of the generator by min-
imizing the reconstruction error of the target image. By
manipulating latent codes and modifying objective functions,
image manipulation or restoration results can be obtained. In
Image2StyleGAN [26] and Image2StyleGAN++ [27], latent
codes are optimized and manipulated over the intermediate la-
tentW space of StyleGAN [23] andW+ space of StyleGAN2
[24], to achieve image inpainting, morphing and style mixing
results. mGANPrior [32] optimized multiple latent codes and
adaptively fused them to achieve various image restoration
results, including image colorization, super-resolution, and
image denoising. Noticing the distribution gap between the
training and testing data, DGP [28] further proposed to fine-
tune generator parameters on-the-fly to adapt the target im-
ages while maintaining statistics of the GAN learned priors.
Though they require no training procedure, optimizing-based
methods are usually time-consuming due to the large number
of iterations needed for each instance image.

Learning-based approaches train an encoder to map an
image to the latent code. By modifying encoder architectures
and the objective function, various image manipulation and
reconstruction results can be achieved. pSp [33] trained a
multi-stage encoder to generate a series of style codes for
StyleGAN2 [24], in order to handle various facial image
translation tasks including conditional image synthesis, facial
frontalization, and inpainting, etc. GLEAN [34] proposed an
encoder-generator-decoder design to fulfill the large-factor
image super-resolution task. GFP-GAN [29], and GPEN [35]
fused target image features with generative prior features
to restore real-world degraded face images. [30] warps and
modulates generative prior features to achieve controllable
and diverse image colorization results. Unlike optimization-
based approaches, learning-based approaches obtain image

http://database.mmsp-kn.de/gfiqa-20k-database.html
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restoration results by only one feed-forward pass. However,
extra data are usually needed to train these task-specific
models.

In this paper, we in the first time explore the potential usage
of generative priors to the task of IQA. Specifically, we employ
rich statistics encoded by StyleGAN2 as latent references from
the pristine face image manifold to facilitate the blind IQA
problem. In order to utilize generative priors efficiently and
effectively, we propose to train a multi-stage encoder and take
advantage of multi-level attributes controlled by the style codes
to obtain the generative statistics. The proposed approach
avoids both the expensive optimization procedures and the
extra data collection, and shows its superiority in the objective
face IQA problem.

III. THE GFIQA-20K DATABASE

A. Face image dataset creation

Face images were collected from YFCC100M [14], a mas-
sive public multimedia database to ensure quality diversity.
We randomly selected and downloaded one million images,
from which face images were extracted as follows. For a given
image, we applied the MTCNN model [36] to detect faces
and their corresponding key points, where the minimum size
parameter of the face to detect was set as 400. Next, we aligned
the image for each detected face according to the positions of
the detected left and right eyes. The central point of a detected
face was estimated to be the mid-point between the left and
right eye. Next, the detected face image was cropped such
that both the width and height of the crop are equal to four
times the distance between the left and right eye. Finally, the
crop was rescaled to 512 × 512 pixels. With this procedure,
we collected 86, 026 face images in the wild.

The MCTNN model cannot ensure that all faces are detected
accurately. Sometimes, false positives (not human faces) and
inaccurate key points were detected. In light of this, we
manually checked and removed wrongly detected faces. This
step reduced the number of samples to 53, 058.

In the final step, to ensure the identity diversity of selected
face images, we extracted their 512-dimensional deep features
using the FaceNet model [37]. We next applied k-means
clustering on the deep features to partition the 53, 058 images
into 20, 000 clusters. In each cluster, an image is randomly
selected as a representative. With this step, the number of face
images decreased to 20, 000, which formed the face images of
the GFIQA-20k.

B. Subjective face image quality assessment

We performed a large-scale subjective study to assess the
visual quality of 20, 000 face images. The 20,000 images
were randomly divided into 500 batches, where each batch
contained 40 images initially. To better monitor and analyze
participants’ performance, two reliability mechanisms were
used. One is adding gold-standard or test data for which the
correct answers are already known [38]. The other is utilizing
a consistency test by posing the same question multiple times
[39]. In our study, we manually selected 100 high-quality and
100 low-quality face images as gold-standard images. Five

images were randomly sampled (with replacement) from the
200 images and added to each batch. Moreover, five of the 40
study images were presented twice in each batch. Eventually,
each batch contained 50 images to be rated.

Fig. 1. UI for the subjective generic face IQA study. Each time participants
are presented an image within a batch, they dragged a slider below the face
to rate its visual quality from Bad (1%) to Excellent (100%).
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Fig. 2. Statistics of reliability analysis for freelancers. The self-consistency
on repeatedly presented images, expressed as the SRCC (y-axis) between
the two scores provided for each image vs the accuracy (x-axis) achieved
on test images. All participants achieve an excellent self-consistency while
maintaining a high level of accuracy relative to the gold-standard ratings. All
participants submitted ratings for all images, except for the one shown in red,
who submitted 153 batches (6,120 study images).

Before carrying out the study, participants were first pre-
sented with a page of instructions containing four sections.
In the first section, the definition of technical image quality
was introduced. The basic hardware requirements and detailed
study steps were explained in the second and third sections,
respectively. In the final section, apart from showing examples
with different quality scales, we also gave some examples to
differentiate technical face image quality and face attractive-
ness.

The user interface (UI) for the subjective generic face
IQA study is shown in Fig. 1. We used the standard 5-point
absolute category rating (ACR) scale, i.e., Bad, Poor, Fair,
Good, and Excellent. To be more specific, participants are
presented with a batch of face images, one at a time. Each
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Fig. 3. Sampled face images with their corresponding MOS (white digits) in the GFIQA-20k dataset. Top two rows correspond to the 20 faces with highest
MOS, whereas bottom two rows correspond to the 20 faces with lowest MOS.

time participants dragged a slider below the face image to
rate its visual quality from Bad (1%) to Excellent (100%). As
participant was required to drag a slider, we linear mapped
the scale to the range of [0.01, 1] (rather than [0, 1]). To be
more specific, let x be the original 5-point ACR, the mapped
score is y = (x− 1)/4× 0.99 + 0.01. As a result, the mapped
5-point ACR on the slider is Bad - 1%, Poor - 25.75%, Fair
- 50.5%, Good - 75.25%, Excellent - 100%.

To guide the freelancers on using the interface, we pro-
vided a training session for them. It contained 60 face im-
ages with given answers collected from the KonIQ-10k IQA
database [1]. After giving a quality rating for an image,
freelancers could click a button to proceed to the next image.
However, if the assessment result was incorrect, they were
informed about that, and a range for the slider position was
suggested. Freelancers could only proceed after having moved
the slider into the correct range.

A total of 13 freelancers were hired to participate in this
study, 7 of whom are visual arts professionals such as de-
signers, graphics artists, and photographers. More importantly,
they all had achieved an excellent performance in a previous
IQA contest of ours (not published), which demonstrated their
expertise in IQA. One freelancer quit the study after submitting
153 batches and the rest completed the entire study.

C. Reliability analysis of freelancers

To analyze the reliability of freelancers, we used accuracy
to measure the performance of freelancers on gold-standard
images. For a test image, a freelancer’s answer would be
counted as correct if his answer falls in the range of 1% to 35%
when the image is labeled as low quality or of 65% to 100%
when the image is labeled as high quality. For the consistency
test, we used Spearman’s rank correlation coefficient (SRCC).

The statistics of reliability analysis for freelancers is shown
in Fig. 2. As can be observed, the accuracy (x-axis) on test
images varies from 70% to 92%, whereas the SRCC (y-axis)

on repeated images various from 0.90 to 0.99. It shows that
although some freelancers might not agree with the ground
truth answers of gold-standard images we provided, they still
keep a very high self-consistency on repeated images.
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Fig. 4. Correlation between ratings of each individual freelancer and MOS.
The PLCC various from 0.832 to 0.928. All participants submitted ratings
for all images, except for the one shown in red, who submitted 153 batches
(6,120 study images).

Apart from the reliability analysis, we report the Pearson
linear correlation coefficient (PLCC) between individual rat-
ings and MOS in Fig. 4. As can be observed, the ratings of
each freelancer are highly correlated with MOS, which also
demonstrate their reliability.

Although our analysis demonstrates the reliability of free-
lancers to some extent, freelancers might have paid insufficient
attention during their work. Therefore, we screen ratings based
on the assumption that ratings provided by reliable ones lie in
an interval around the mean of all ratings in an image. To
be more specific, the length of the interval is two times the
standard deviation of all ratings from an image, ratings outside
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Fig. 5. The proposed face IQA model utilizing generative priors. Our framework consists of three parts: an encoder to both invert target image and extract
distortion features, a generator to produce latent reference features in a pretrained GAN space, and a predictor to make quality estimations by refining and
fusing target image features and latent reference features.
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blocks.

the interval will be removed and the rest yield mean opinion
scores (MOS). Some face examples with their corresponding
MOS are shown in Fig. 3.

IV. FACE IMAGE QUALITY ASSESSMENT WITH
GENERATIVE PRIORS

In this section, we give a detailed description of the pro-
posed objective face IQA model utilizing generative priors. As
shown in Fig. 5, the overall framework consists of three parts:
a multi-stage style code encoder to map the target image into
the latent GAN space, a pretrained GAN model to generate
intermediate reference features, and a quality predictor to
make objective face quality estimations by fusing both target
image features and intermediate reference features. Compared
with conventional IQA models which mostly employ a single
encoder architecture for quality score regression, utilizing gen-
erative priors in the proposed framework has two advantages:
first, by restricting target image features to the GAN latent
space, semantic meaningful and attribute aware representations
can be encoded. Second, by feeding forward the latent codes,
intermediate GAN encoded statistics can be acquired and
served as latent references to facilitate the challenging no-
reference quality prediction task.

A. Obtaining GAN Encoded Statistics

Due to the lack of inference ability of GAN model, we
first invert the target image x into latent codes {wi | i =

1, 2, . . . , N} in the GAN input space. Specifically, we choose
to train an encoder E to map target images into theW+ space
of StyleGAN2 [24], a state-of-the-art GAN model being ca-
pable of generating diverse facial images with high resolution
and visual quality. Similar to [33], we encode N style codes
with 512 dimensions from multi-stages of a ResNet50 [40]
backbone network,

{wi}, fE = E(x; θE), i = 1, 2, . . . , N (1)

where fE are intermediate features and θE are parameters of
E. The N latent codes {wi} are then fed to the different scales
of a fixed StyleGAN2 generator G to produce a reconstruct
result x̂(N). During generation, we add {wi} to the average
latent code w̄ in the pretrained generator space to achieve a
good initialization,

x̂(N) = G({wi}+ w̄), i = 1, 2, . . . , N (2)

where x̂(N) denotes the reconstructed result from x.
To train the encoder, we minimize θE over the reconstruc-

tion error between x̂(N) and x,

θ∗E = arg minL(x̂(N), x), (3)

where L denotes loss functions.
In this way, we train encoder to map a distorted target

image x into the GAN latent code space, and obtain the in-
termediate distorted features fE for further quality prediction.
However, in order to utilize rich generative priors, it is not
enough to simply reconstruct the target image and extract the
corresponding generative features. Since under the scenario
where target images are contaminated with distortions, the
reconstructed results also contain degradation patterns and
thus harm the GAN encoded statistics. In order to obtain
facial statistics in the original GAN space, we take advantage
of the interpretable and controllable attributes of the multi-
scale latent codes {wi}. As latent codes at different scales are
responsible for controlling level specific facial attributes [23],
[41], we observed that the low level distortion attributes are
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inherently encoded in latent codes at finer scales, and GAN
statistics in early stages are still preserved. Therefore, during
feed forward, we propose to inject the first K,K < N codes
to G, and discard the last N − K latent codes controlling
the low-level details of G to obtain generative representations
fG(K), which preserve the GAN encoded statistics.

x̂(K), fG(K) = G({wi}+ w̄), i = 1, 2, . . . ,K (4)

where x̂(K) is the reconstructed image with only first K
codes injected, and fG(K) denotes the intermediate generative
features.

Under the framework, the first K codes are responsible
for reconstructing high-level facial attributes such as facial
contours and organ shapes resembling the target image. And
generative statistics are preserved since distortion patterns
encoded in low-level codes are discarded. It is worth noting
that by directly discarding N − K latent codes, we do
not obtain reconstruction results that precisely match target
images. However, in our IQA task, we do not need such perfect
reconstruction results, the results already obtain sufficient
statistical priors to be served as latent references for facilitating
the IQA problem. By further refining reference features to
target image features, we combine them together to make
objective quality predictions.

B. Quality Assessment with Generative References

After obtaining target image features fE and generative
reference features fG(K), we refine and fuse them for quality
prediction. Specifically, we extract high level representations
fE ∈ R2048×16×16 from the last stage of E to avoid another
encoding process, and fG(K) ∈ R32×256×256 from the last
scale of G since it contains most generative information.
We then apply an 1 × 1 convolution to fE and a series
of map2quality blocks to fG(K) for feature refinement. As
mentioned in Section IV-A, since the reconstruct structures do
not perfectly match target image, in order to refine the refer-
ence features, we use a CBAM [42] with residual connection
inside each block to gradually adjust the features, and a 3× 3
convolution with stride 2 and doubled channel numbers to
resize features, as shown in Figure 6. We then modulate fE
by fG(K), following the spatially-adaptive denormalization
(SPADE) operation proposed in [43]:

fmod = γn,c,y,x(fG(K))
fn,c,y,xE − µc

E

σc
E

+ βn,c,y,x(fG(K)),

(5)
where γn,c,y,x(fG(K)) and βn,c,y,x(fG(K)) are element-
wise modulation parameters after convolving fG(K) with
3×3 kernels, n, c, y, x are batch, channel and spatial indexes,
respectively. µc

E and σc
E denotes channel-wise mean and

standard deviation values of fE .
The operation modulates the distribution of target image

features fE from its original distorted space to a generative
reference space, thus serves as refined reference features to
the target image. Finally, we concatenate fE with fmod, and
apply global average pooling followed by 3 fully connection

layers to regress the features to the quality prediction score
q̂(x).

C. Objective Functions

We use three parts of loss functions, i.e. image reconstruc-
tion loss, regularization loss and quality prediction loss to
train our model. Image reconstruction loss ensures accurate
GAN inversion results, containing an L2 loss, a perceptual
loss Lpercep and a face identity loss LID, represented as,

L2(x) = ‖x− x̂(N)‖2 (6)

Lpercep(x) = ‖fpercep(x)− fpercep(x̂(N))‖2 (7)

LID(x) = 1− 〈R(x), R(x̂(N))〉, (8)

where fpercep(·) extracts perceptual features from a pretrained
VGG [44] model, and R(·) extracts identity vectors from a
pretrained ArcFace [45] model.

The regularization loss constrains encoder E to output {wi}
distributed within the latent generator space, to avoid harming
generative encoded statistics,

Lreg(x) = ‖{wi} − w̄‖2. (9)

The quality prediction loss further optimizes parameters in
the predictor, and we calculate L1 loss between the prediction
result and subjective labels q(x),

Lq(x) = ‖q(x)− q̂(x)‖1. (10)

Finally, we sum up the above loss functions with weighted
factors λi, i = 1, 2, . . . , 5 and jointly train the proposed model,

L(x) =λ1L2(x) + λ2Lpercep(x) + λ3LID(x)

+ λ4Lreg(x) + λ5Lq(x).
(11)

D. Implementation Details

In Table I, we show detailed architecture of the proposed
model. We show each module operation with its source input
and output settings in the table. Output size is shown in the
order of Channels×Height×Width. It is worth noting that
for a pretrained StyleGAN2 generating a 512×512 resolution
image, total 8 stages (1 stage without and 7 stages with
upsampling) are included, and we combined every two stages
in Table I for simplicity.

We implemented our model by Pytorch, and StyleGAN2 is
implemented based on its Pytorch version re-implementation.
Pretrained StyleGAN2 model is taken from GFPGAN [29],
where they provided the parameters for a 512×512 generator
model. We selected K = 12 for our model. During training,
batch size is set to 16, and learning rate is set to 5×10−5 and
then decayed by a factor of 10 at every 10 epochs. We trained
the model with Adam optimizer [46] for total 25 epochs to
report the final results. The whole model is trained using eight
NVIDIA 1080Ti GPUs.

https://github.com/rosinality/stylegan2-pytorch
https://github.com/TencentARC/GFPGAN
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TABLE I
DETAILED ARCHITECTURE OF OUR PROPOSED MODEL.

Module Operation Input Output Size

Encoder

ResNet Stage1 3× 512× 512 target image 256 × 128 × 128
ResNet Stage2 ResNet Stage1 512 × 64 × 64
ResNet Stage3 ResNet Stage2 1024 × 32 × 32
ResNet Stage4 ResNet Stage3 2048 × 16 × 16

map2style1 ResNet Stage1 512 × 1 × 1
map2style2 ResNet Stage2 512 × 1 × 1
map2style3 ResNet Stage3 512 × 1 × 1
map2style4 ResNet Stage4 512 × 1 × 1

Generator

StyleGAN2 Stage1 map2style4, 4× 4 constant 512 × 8 × 8
StyleGAN2 Stage2 map2style3, StyleGAN2 Stage1 512 × 32 × 32
StyleGAN2 Stage3 map2style2, StyleGAN2 Stage2 128 × 128 × 128
StyleGAN2 Stage4 map2style1, StyleGAN2 Stage3 32 × 512 × 512

Predictor

map2quality × 5 StyleGAN2 Stage4 1024 × 16 × 16
modulation ResNet Stage4, map2style 1024 × 16 × 16

concat ResNet Stage4, modulation 2048 × 16 × 16
global average pool concat 2048
fully connection1 global average pool 1024
fully connection2 fully connection1 512
fully connection3 fully connection2 1

TABLE II
PERFORMANCE COMPARISONS BY TRAINING ON PREVIOUS GENERALIZED

IQA DATASETS WITH A SPECIFIED MODEL AND TESTED ON THE
GFIQA-20K TEST SUBSET.

Dataset/Model SRCC↑ PLCC↑ RMSE↓
LIVE/MEON 0.6603 0.6371 0.1593
LIVEC/HyperIQA 0.7501 0.7314 0.1055
KonIQ-10k/Koncept512 0.8968 0.8925 0.0826
SPAQ/MT-A 0.6980 0.7144 0.1282
KonIQ++/BIQA 0.9225 0.9196 0.0720

V. EXPERIMENTS

A. Setup

We first split the proposed GFIQA-20k dataset into a train-
ing subset (70%, 14,000 images), a validation subset (10%,
2,000 images) and a test subset (20%, 4,000 images). During
testing, we selected the best performing model with the highest
SRCC on the validation set for performance comparisons. We
use SRCC, Pearson Linear Correlation Coefficient (PLCC),
and Root Mean Square Error (RMSE) to evaluate model
prediction accuracy and monotonicity.

B. How Do Generalized IQA Datasets Perform on Face Im-
ages?

In order to reveal quality properties of face data, we
first conducted cross database tests to evaluate how previ-
ous generalized IQA datasets and models perform on the
face IQA task. Specifically, we selected one synthetic IQA
dataset LIVE [47] and four in-the-wild IQA datasets including
LIVE Challenge (LIVEC) [48], KonIQ-10k [1], SPAQ [2]
and KonIQ++ [49] for cross testing. We trained IQA models
MEON [50], HyperIQA [51], Koncept512 [1], MT-A [2], and
BIQA model [49] on the five datasets respectively, and tested
them on the GFIQA-20k test subset. Among testing models,
MEON [50] and HyperIQA [51] are state-of-the-art (SOTA)
IQA methods performing well on synthetic and authentic
distortions respectively, and the other models are proposed
along with their training datasets. We report the results in Table
II.

From Table II, we observe that training on the synthetic
IQA dataset LIVE did not give good predictions for in-the-
wild face data. This result was foreseeable because of the

domain gap between real world degradation and laboratory
simulated distortions. The two authentic IQA datasets LIVEC
and SPAQ also yielded relatively poor performances on the
face data. This is probably because of the small number of
training samples (1,162 images) contained in LIVEC and
because of the bias in images of smartphone photography
collected in SPAQ. Surprisingly, we found that KonIQ-10k and
its extension KonIQ++ both performed relatively well (around
0.90 SRCC). The possible reason is that images from the
KonIQ-10k dataset and the proposed GFIQA-20k dataset are
both selected from YFCC100M [14], and content overlapping
might exist. Despite this, there still left a space for further
performance improvement, and we discuss the development
of face IQA models in the following.

C. Performance Evaluation with Competing Models

In this subsection, we conduct performance comparisons
with models trained with GFIQA-20k data. Due to the lack
of baselines in the generalized face IQA task, we first came
up with diverse baseline models from different upstream
tasks. Specifically, we selected ArcFace [45] pretrained on
a refined face recognition dataset MS1M [52], Koncept512
[1] pretrained on a general IQA dataset KonIQ-10k [1], and
ResNet50 [40] pretrained on the image classification dataset
ImageNet [53]. We finetuned these models on the GFIQA-
20k training subset and report the results in Table III. As
can be seen, by simply transfer learning, all the baseline
models achieved high performance (over 0.95 SRCC). The
result demonstrates the effectiveness of the collected data in
handling face IQA task.

TABLE III
PERFORMANCE COMPARISONS OF TRANSFER LEARNING OF BASELINE

MODELS, GENERALIZED IQA MODELS AND THE PROPOSED MODEL.

Model SRCC↑ PLCC↑ RMSE↓
ArcFace 0.9505 0.9503 0.0588
Koncept512 0.9520 0.9512 0.0572
ResNet50 0.9629 0.9635 0.0504
BRISQUE 0.7824 0.8055 0.1793
CORNIA 0.8547 0.8616 0.1001
PQR 0.9517 0.9530 0.0557
HyperIQA 0.9626 0.9628 0.0502
MUSIQ 0.9628 0.9634 0.0504
Proposed 0.9639 0.9644 0.0489

We further compared the proposed model with five gen-
eral IQA models BRISQUE [54], CORNIA [55], PQR [56],
HyperIQA [51] and MUSIQ [57]. Here BRISQUE represents
a natural scene statistic based IQA method, CORNIA is a
traditional learning based method and the rest are SOTA in-
the-wild IQA models. Among all the competing models, the
proposed model outperformed the others by all three criteria.
We also observe that the transfer learned model ResNet50
performed even slightly better than the competing SOTA IQA
models. This is probably because the cropping strategy applied
in HyperIQA and MUSIQ damages facial structures which are,
however, crucial to the task.

To further validate the effectiveness of the proposed model,
in Table IV, we evaluated how the model performed when the
number of training samples varies. We compared the proposed
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Fig. 7. We visualize some generated latent reference images (right) with respect to their distorted images (left). Thanks to the powerful generative prior
information, latent reference images are constructed despite various distortions contained in inputs, being able to facilitate our quality prediction task.

TABLE IV
PERFORMANCE COMPARISONS WHEN THE TRAINING SAMPLE SIZE VARIES.

Criterion Model 10% 20% 30% 40% 50% 60% 70%

SRCC↑ ResNet50 0.9480 0.9542 0.9581 0.9612 0.9626 0.9628 0.9629
Proposed 0.9484 0.9565 0.9609 0.9625 0.9632 0.9638 0.9639

PLCC↑ ResNet50 0.9474 0.9537 0.9586 0.9618 0.9625 0.9632 0.9635
Proposed 0.9478 0.9570 0.9608 0.9623 0.9635 0.9643 0.9644

RMSE↓ ResNet50 0.0603 0.0550 0.0524 0.0521 0.0514 0.0507 0.0504
Proposed 0.0586 0.0538 0.0514 0.0503 0.0501 0.0489 0.0489

model with the well-performing ResNet50 baseline, and varied
the training sample size from 10% to 70% of the images in the
GFIQA-20k dataset, leaving the remaining images for testing,
except for the validation subset. Similarly, the proposed model
showed consistently superior prediction accuracy for variable
training sample sizes.

D. Visualizing Generative References

One of the benefits facilitated by utilizing generative priors
is producing latent reference face images with preserved GAN
statistics. In this subsection, we visualize the reconstructed
reference images to illustrate the effectiveness. In Fig. 7,
we show pairs of distorted images x and the reconstructed
latent references x̂(K). We include various in-the-wild dis-
tortions, including blur, color, contrast, noise, and composite
distortions. Thanks to the rich prior information encoded in
generative models, the reconstructed images are of high quality
and thus well serve as latent references to the degraded input
images, which further facilitates the blind face IQA task. It is
worth noting that since we impose loss constraints mainly on
face regions, the generated latent reference images might not

precisely match target images in background. However, since
HVS is extremely sensitive to human faces, the difference
in background regions does not contribute critically to the
perceptual face image quality. Therefore, in the IQA task,
we do not need perfect reconstruct images as references, but
instead we extract the intermediate features and modulate them
to promote the model performance.

E. Ablation Study

In this subsection, we conducted several ablation experi-
ments to evaluate the effectiveness of the model design. We
first compared with the baseline encoder ResNet50 trained
by only Lq loss. We then added StyleGAN2 and constraints
of reconstruction error to the model, but did not fuse the
latent reference features (w/o ref), to observe if encoding in
generative latent space benefits model performance. Next, we
evaluated how different values of K affected the performance.
We selected K = 4, 8, 12, 16 respectively, while keeping other
components fixed. Last, we validated the designation of the
quality predictor. We substituted the map2quality module to
ordinary convolution blocks (w/o map) while keeping other
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Fig. 8. We show some flawed generative prior references, the images include rotating faces, turning out to be challenging samples for a pretrained StyleGAN2
model to reconstruct. Involving images with more diverse rotation angles to train more powerful generative priors might be a solution.

parts fixed. We also removed the modulation block and sim-
ply concatenated FE and FG(K) (w/o mod) to observe the
effectiveness of the feature modulation block. The results are
shown in Table V.

TABLE V
ABLATION STUDIES ON DIFFERENT MODEL CONFIGURATIONS.

model SRCC↑ PLCC↑ RMSE↓
baseline 0.9629 0.9635 0.0504
w/o ref 0.9629 0.9636 0.0504
K=4 0.9624 0.9630 0.0504
K=8 0.9627 0.9635 0.0505
K=12 0.9639 0.9644 0.0489
K=16 0.9637 0.9644 0.0492
w/o map 0.9631 0.9635 0.0503
w/o mod 0.9634 0.9640 0.0495
full 0.9639 0.9644 0.0489

From Table V, we make several observations. First, though
not evident, encoding in generative latent space (w/o ref)
slightly improved model performance. Second, when extract-
ing latent reference features from earlier generator stages
(small K values), the model showed inferior performance
compared with baseline. This is probably because in early
stages, the generator is not able to encode enough statistics
as reference. However, when we extracted features from latter
stages, they outperformed the baseline model. Third, remov-
ing the map2quality or modulation module reduced model
performance, indicating the effectiveness of the proposed
architecture of quality predictor.

VI. DISCUSSION

Though the proposed model showed its superiority in face
quality prediction, we find that generative priors occasionally
lead to unsatisfactory reconstruction results, as shown in
Fig. 8. We assume this is because the generative prior model
StyleGAN2 was mostly trained with frontally viewed samples
but few rotated faces. Thus, the generator can produce frontally
viewed faces but underperforms otherwise. To address this
challenging issue, training the generative model with diverse
view angles to provide more powerful priors might be a
solution, and we leave the task for future work.

VII. CONCLUSION

In this paper, we created GFIQA-20k which is the largest in-
the-wild database for human face quality prediction. It may fa-

cilitate several applications such as digital album optimization,
face image restoration/enhancement, and generalized IQA. We
further proposed a novel face IQA model, the first to exploit
generative priors for this task. Benefiting from referencing rich
statistics encoded in pre-trained deep generative models, the
model made accurate objective predictions, and experiments
validated its effectiveness.
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