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Abstract—Video streaming under real-time constraints is an
increasingly widespread application. Many recent video encoders
are unsuitable for this scenario due to theoretical limitations or
run time requirements. In this paper, we present a framework
for the perceptual evaluation of foveated video coding schemes.
Foveation describes the process of adapting a visual stimulus
according to the acuity of the human eye. In contrast to
traditional region-of-interest coding, where certain areas are
statically encoded at a higher quality, we utilize feedback from
an eye-tracker to spatially steer the bit allocation scheme in real-
time. We evaluate the performance of an H.264 based foveated
coding scheme in a lab environment by comparing the bitrates
at the point of just noticeable distortion (JND). Furthermore, we
identify perceptually optimal codec parameterizations. In our
trials, we achieve an average bitrate savings of 63.24% at the
JND in comparison to the unfoveated baseline.
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I. INTRODUCTION

Video streaming is ubiquitous and imposes ever-growing
demands on content and network providers [1]. Increasing
resolutions coupled with bandwidth limitations motivate on-
going research on sophisticated video codecs and compression
algorithms. In this paper, we are concerned with the emerging
subclass of real-time video streaming applications. Besides
transmitting and rendering a video sufficiently fast, these ad-
ditionally require to encode it under strict latency constraints.

Video codecs rely on the analysis and exploitation of
correlations between pixel color values to achieve high visual
quality at low bitrates. Recently proposed approaches combine
a multitude of incremental and often marginal improvements to
coding techniques [2], on which real-time requirements impose
additional feasibility criteria. On the one hand, coding methods
have practical limitations, which can be solved often by fast,
hardware-supported implementations of certain mathematical
operations. On the other hand, theoretical requirements enforce
strict constraints on methodology choices. For example, bi-
directional inter-prediction schemes that use past and future
keyframes during interpolation, are usually not applicable in
real-time scenarios, in particular when the required temporal
buffering already violates latency constraints.

In addition to the conventional approach of improving the
coding efficiency over the entire frame, region of interest (ROI)
coding allows focusing on rendering parts of the frame that are
more relevant to the viewer at higher quality settings. However,

conventional video applications allow making only a narrow
range of assumptions about the spatial relevance of the content
within a given frame. This limits the potential improvement
due to ROI-coding. The limitation stems primarily from not
knowing a priori what region an observer will be interested
in. Content-based predictions of ROIs are generally speculative
and inaccurate.

We investigate possible improvements for video coding by
adding gaze information to the encoding process by using
an eye-tracker. We expect this approach to be much more
accessible in the near future due to the prevalence of large
high-resolution screens in combination with the advent of
eye-tracking devices in consumer hardware. The approach
allows us to make strong assumptions about the active region
of interest in each frame, devise an appropriate encoding
scheme that boosts the quality around gaze fixation-points, and
design subjective experiments to study the performance of our
software framework. Our approach goes beyond the traditional
concept of ROI coding by gently degrading the quality of
the video outside the ROI. This is the process of foveation,
which adapts the video rendering according to the acuity of
an observer’s eyes, in real-time. Possible application scenarios
include video telephony and streaming, and novel technologies
that could be bolstered by our approach, e.g., human assistance
in steering semi-autonomous vehicles, medical or industrial
robots and drones, and more.

In summary, we present a modular software for the assess-
ment of foveated video coding schemes, including a reference
implementation based on x264 [3]. Furthermore, we evaluate
the performance of our approach in a lab study and quantify
the bitrate gains at the point of just noticeable distortion. Our
experiments show that our foveated codec achieves a 63.24%
average bitrate savings in comparison to the unfoveated base-
line.

II. RELATED WORK

The relevant literature on this subject matter has broad
coverage, ranging from psychophysical aspects of human
perception to contributions in the image and video coding
domain. We need to understand the limitations of human
vision, with regard to attended regions during video playback,
in order to devise an efficient foveated codec.

The core assumption of our work is centered on the concept
of foveation in human vision. Due to the limited bandwidth978-1-7281-5965-2/20/$31.00 ©2020 IEEE



of the optic nerve, the human eye encodes spatial information
coming from the environment unevenly. The fovea, the central
piece of the retina, has the highest visual acuity, whereas
the acuity rapidly drops towards the periphery. An exhaustive
depiction of the human visual system (HVS) is found in [4],
of which the chapter on the retinal representation is seminal to
this work. Further insight into the distribution of retinal cells,
the foveal and peripheral density of cone receptors, is given in
[5]; the latter also broaches on implications for the resolution
capacity of the human eye from a theoretical perspective.

As the human eye perceives less information from the
visual periphery, videos do not need to render all details in
such regions. Adapting a visual stimulus relative to the acuity
of the human eye is not a novel idea. Girod [6] discussed
compression algorithms that exploit this peculiarity already
in the late 80s. He considered the “usefulness of the approach
[as] limited” due to encoding and transmission latencies, which
may not be the case anymore three decades later. Wang et al.
published an approach to a region of interest (ROI) coding
in the context of embedded zerotree wavelet coding [7]. This
methodology has seen successful applications for still images
already [8]. When reviewing older contributions, one has to
carefully distinguish between ROI coding and foveation, as
the nomenclature is partially overlapping and ambiguous. For
the purpose of this paper, foveation describes the process
of adapting a visual stimulus according to the acuity of an
observer’s eyes, in real-time.

Foveation is currently popular in the domain of virtual
reality [9]. The approach generally benefits from increasing
screen sizes, as these allow to present a larger area in the
peripheral regions of an observer’s field of view.

The work of Illahi et al. [10] is closely related to ours.
They present a streaming framework that utilizes foveation
in the context of cloud gaming and evaluate its performance
for different genres of video games. We aim to investigate a
similar approach, but for the live streaming of natural videos.
Thereby we hope to reduce subjective influences due to the
less interactive nature of videos in comparison to computer
games.

Arndt et al. [11] present a study on the perceptual impact
of overlaying a low quality background stream with suitably
cropped parts of a high quality video. However, the authors
didn’t address the difficulties imposed by compression: the
cropping is happening on the client side, which has the HQ
video readily available. There is also no mention of the
influence on the bitrate, which is one of major reasons such a
coding procedure would be applied in practice.

III. THE FFOVEATED SOFTWARE SUITE

The general idea of a software suite for subjective quality as-
sessment of foveated video opens many engineering questions.
Video data is seldom stored raw, due to the sheer file size, but
instead as a compressed stream, together with audio tracks
and possibly other metadata in multiplexed container formats.
Furthermore, the goal of this project is not the development of
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Fig. 1. General schematic of a transform-domain video encoder.

a novel codec per se, but the extension, utilization, and evalu-
ation of existing methods. We aim for the ability to interface
data formats and codec implementations in a flexible way. In
an effort to keep our program extensible, we hence decided to
build upon FFmpeg’s [12] library collection. The source code
of our implementation, which we call FFoveated, will be
released to the community.

From a coarse perspective, FFoveated provides function-
ality to re-encode and display a given video in a foveated
fashion. For this purpose, an eye-tracker permanently updates
information about the user’s gaze. FFoveated is codec-
agnostic in the sense that it passes all required information
to the wrapper in libavcodec on a per-frame basis, where
implementation-dependent handling has to happen. This is
provided by a patch for FFmpeg, that allows utilizing the func-
tionality provided around the AVFrameSideData struct.
In order to reduce the intrinsic latency of the pipeline to a
minimum, we implemented the reading and demultiplexing
of a container file, decoding of the source video, foveated
re-encoding, decoding of the foveated video and finally dis-
playing the frames in independent threads. We utilize SDL
[13] to keep rendering of AVFrames to the screen as well
as event handling abstract and platform-independent. Our
implementation was tested on Linux and MinGW [14].

A. Codec Implementation: Foveation Using x264

Following the codec-independent part, we will now describe
how to steer the compression rate for a specific codec spatially.
For this purpose, we chose x264 [3], an established imple-
mentation conforming to the H.264 [15] standard. The modus
operandi of a lossy transform-domain encoder is outlined in
Fig. 1. A large share of the bitrate reduction is realized through
block quantization, which maps the frequency coefficients
from a continuous domain to a discrete set of possible values.
In the case of x264, the granularity of this process is governed
by a quantization parameter qp, which ranges from 0 to 51. A
higher qp results in a coarser quantization, thus a lower bitrate
and reduced visual quality. This value is usually determined
for each block through content-based heuristics, which assign,
for instance, a lower bit budget to blocks with large motion
vector magnitudes, as the eye is less sensitive to details in fast-
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moving parts of a video. We incorporate eye-tracking data by
supplying an offset q̄ to qp.

q̄(x, y) = δ

(
1− exp

(
− (x− x0)2 + (y − y0)2

2σ2

))
(1)

This offset can be calculated for a macroblock at position
(x, y) given a fixation point (x0, y0), a standard deviation
σ and a scale factor δ. A two dimensional Gaussian is a
natural choice to model the spatial quality distribution given
the circular shape of the fovea centralis [4]. As depicted in
Fig. 2, our function of choice does not inflict a quantization
penalty on the fixation point at (x0, y0), where q̄ = 0.

Since the acuity of the human eye sharply drops around the
fovea centralis [16], we chose to set σ to 2.5◦ of visual angle.
The choice is based on the characteristics of the retina, but still
an approximation, as the perceptual impact of q̄ is content
dependent. Under these premises, the question is how to
choose δ such that the bitrate is minimized without introducing
overly-disturbing artifacts in the peripheral regions.

We adapted the default settings of x264 in the following
way. The group of picture (GOP) size limit is set to only
three frames in comparison to the default of 250. This enforces
frequent I-frames, which prevents quantization artifacts from
remaining visible for an extended period of time in the event
of saccades. Our strategy is similar to the one used by
Lungaro et al. [17], who experimented with frequent I-frames
in the context of quality switching problems occurring in
head mounted virtual reality streaming. Additionally, it serves
as mitigation to packet-loss-induced stalling during network
streaming. We are aware that this choice influences the visual
quality in the peripheral regions, as it increases the frequency
at which flickering at GOP transitions occurs. The effect on
perceptual quality is probably positive. This is a tradeoff, in
which the bitrate penalty for I frames has to be balanced with
the perceptual effects of larger GOPs.

We chose the ultrafast encoder preset and enabled the
zerolatency tuning option. Adaptive quantization has to be
enabled to utilize foveation, and we set the variance aq-mode.

Notably, this implementation does not break the H.264 spec-
ification and that the resulting videos can hence be displayed
with any standard-conforming player.

IV. PERCEPTUAL QUALITY IN FOVEATED CODING

The human eye with the complementary neuro-visual sys-
tem is the final recipient of visual media. Therefore, perfor-
mance improvements in coding have to be measured in terms
of bitrate gains relative to the impact on subjectively perceived
quality. Automated assessment of image and video quality is
an active field of research. Current developments in this do-
main are focused on the creation of databases, e.g., [18]–[22]
and the utilization of machine-learning algorithms [23]–[26]
to predict subjective scores for images and videos. While the
challenges in this field are far from being solved for traditional
video codecs, foveation adds yet another layer of complexity
to the problem. The deliberate introduction of degradations in
certain regions of a video requires a spatial weighing of local
quality scores with regard to their significance for the observer.

To a certain degree, foveation reduces the repeatability of
quality assessment studies, as it introduces a feedback loop
that modifies the media item under inspection. In contrast to
non-foveated coding, it is not currently possible to run large-
scale studies on crowdsourcing platforms, as eye-tracking
hardware is not yet common enough in consumer hardware.
Therefore, the practical feasibility of lab studies is another
factor when choosing a study methodology.

The notion of just noticeable difference [27] is relevant
in the context of comparative multi-stimuli experiments, but
can be adapted to single-stimulus scenarios in the sense of a
just noticeable distortion (JND) [28]. A study participant is
required to indicate whether noticeable distortions are present
in a displayed video. This approach is promising for the quality
assessment of foveated videos in general, and the definition of
a just-noticeable maximal quality difference δ in particular.

We hypothesize that our algorithm performs well for scenes
where the predominant salient region is confined to a small
area surrounded by a tranquil background. However, videos
with regions in an observer’s peripheral vision that suddenly
attract attention might pose a challenge, as frequent saccadic
eye movement over larger spatial distances could expose
severe compression artifacts to the observer.

V. SUBJECTIVE STUDY

We conducted a subjective study in a controlled lab environ-
ment in order to evaluate the performance of our implemen-
tation. For this purpose, we installed a color-calibrated HP
Z31x screen in a room with solely artificial illumination to
avoid inconsistencies caused by daylight changes. Gaze data
was gathered with an SMI Red250mobile eye-tracker.

We utilized the undistorted source files taken from the
VQEG JEG Hybrid [29] dataset for our experiments. The
10 videos have a length of 10 seconds each and have been
recorded at a resolution of 1920×1080 pixels with a framerate
of 25 fps. The dataset was originally intended for the devel-
opment of video quality assessment algorithms but provided
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Fig. 3. Interactions for source #3: The horizontal axis enumerates all possibly displayed frames. Each vertical bar indicates the beginning of a new repetition.
Colors encode unique participants. An ×-marker is placed for each interaction. Upward and downward triangles denote the δ-range per user, from the lowest
to the highest possible value within a repetition. The grey lines indicate the .25 and the .1 JND for this source over all participants and repetitions.

a sufficiently suitable test set for our application scenario. It
contains diverse scene types that might affect gaze behavior
in various ways, thus exposing the benefits and shortcomings
of our implementation.

The experimental procedure is as follows. After an introduc-
tion to the task and the required setup of the eye-tracker, we
present each source video for a total of 10 repetitions. During
each repetition, we increase δ by adding δ↑ every ∆f frames.
Initially, at the beginning of the first repetition of each source,
δ is set to 0, which means that no foveation is happening.

rep 1 2 3 4 5 6 7 8 9 10
δ↑ 10 5 3 2 2 1 1 1 1 1
δ↓ 25 20 17 15 10 8 8 5 5 5
∆f 25 25 25 25 25 50 50 50 50 50

TABLE I
PARAMETERIZATION OF THE ASSESSMENT PROCEDURE

The only possible interaction a participant can perform is a
button press that indicates that she perceived a visual distortion
in the video. Following an interaction by the participant,
the current repetition is canceled and δ is reduced by δ↓.
After displaying a black screen for a second, either the next
repetition of the same video is started, or the program advances
to the next source. The value of δ is carried on in between
repetitions of the same source video, and the values of δ↑, δ↓
and ∆f are updated according to Table I. If a participant does
not interact during a repetition, δ is simply increased further
according to the parameterization of the next repetition.

This parameter choice enforces a rapid introduction of
degradations during the first few repetitions of each source
video. As δ↑ and ∆f are adapted over time, the participants
can spend attention to increasingly minute distortions. The idea
is to approach the individual δ quickly in the beginning, and
then ever-more slowly, in order to obtain more precise results.

We conducted this study with 10 participants, totaling 1000
displayed repetitions, in which we observed 734 interactions.

VI. RESULTS AND DISCUSSION

During our experiments, we gathered the fixation points and
the δ values that were used to encode each frame and the
information on participant interactions. The results presented
in Table II are calculated at the .25 JND, which is the
distortion level δ, at which 25% of the participants expressed
that a noticeable distortion is present. Fig. 3 indicates that
the rapid initial increases in δ, likely in combination with a
certain reaction time required by the participants to recognize
distortions, leads to a bias due to which the initial participant
interaction reports are over-exaggerated.

Throughout the repetitions, the reported δ values shift
towards lower, more plausible values, and the participants
agree up to a certain difference in subjective sensitivity.

src int. JND (δ) br0 brfov Saving

#1 72 20 6411999.51 2167756.07 66.19%
#2 75 25 4406088.82 1381735.77 68.64%
#3 80 18 5082276.75 1564011.82 69.22%
#4 70 20 8181685.61 2663371.61 67.44%
#5 75 20 8749157.74 1945557.09 77.76%
#6 74 18.25 12931029.08 4619756.35 64.27%
#7 72 17.25 3926922.22 1303707.70 66.80%
#8 75 14.5 5486313.74 1545896.75 71.82%
#9 71 19 8721752.96 2700076.71 69.05%

#10 70 20 5900066.11 1909775.83 67.63%
avg 73.5 19.2 6979729.25 2180162.42 68.88%

TABLE II
FOR EACH SOURCE, WE LIST THE TOTAL NUMBER OF PARTICIPANT
INTERVENTIONS OVER ALL REPETITIONS, δ AT THE .25 JND, THE

BITRATE br0 OF THE UNFOVEATED REFERENCE AND THE BITRATE brFOV

OF THE FOVEATED VERSION AT THE .25 JND, AS WELL AS THE RELATIVE
BITRATE SAVINGS.

Even though the .25 JND is widely used [28], this choice
likely overestimates the performance of our method due to
high δ values in early repetitions. For reference, we also list
the bitrate differences at the .1 JND, at which only 10% of the
participants expressed that noticeable distortions were present.
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Fig. 4. Pixel fixation points of the whole repetition, corresponding to Fig. 5.

Fig. 5. Frame sampled from a video where severe distortions in the periphery
went unnoticed. Extracted from participant #4, source #2, repetition #4.

src JND (δ) br0 brfov Saving

#1 18 6411999.51 2343415.84 63.45%
#2 22 4406088.82 1484050.98 66.41%
#3 14.90 5082276.75 2207136.72 56.57%
#4 18 8181685.61 2861446.75 65.02%
#5 15 8749157.74 2528454.37 71.10%
#6 12 12931029.08 6066398.65 54.08%
#7 14 3926922.22 1475211.66 62.43%
#8 10.4 5486313.74 1885710.74 65.62%
#9 14 8721752.96 3456326.30 60.37%

#10 16 5900066.11 2208880.07 62.56%
avg 15.43 6979729.25 2651704.20 62.55%

TABLE III
THE RESULTS OF TABLE II AT THE .1 JND

We utilize all recorded gaze paths for comparison, resulting
in a whole 1000 foveated videos that are compressed at their
JND level. Partial gaze paths that were recorded up to the n-
th frame and then discontinued due to participant interaction
are compared against an unfoveated compression of the same
source, which was also cropped at the n-th frame. When
utilizing the average δ at the 0.1 JND for all these comparisons
instead of the per-video δ, we achieve an average bitrate
saving of 63.24% in comparison to the baseline.

VII. FUTURE WORK

The good experimental results motivate further work on
research into foveated real-time video coding. A follow-up
task would be to verify our findings in larger-scale studies, in
which aim to deduce more generally valid recommendations
on the parameter choices, as our current experiment is limited
to rather few contents. Higher resolutions and screen sizes
should, as mentioned earlier, further improve bitrate gains,
since it is possible to reduce the quality in a larger share of
each frame. We expect the limiting factor to be the increase
in encoding time; this can be alleviated with task-specific
hardware implementations.

A straightforward improvement for our exemplary x264
backend would be the dynamic introduction of I frames
when large saccades are occurring. The current approach with
frequent I frames ameliorates certain issues in this context, but
raises other difficulties, mainly the high bitrate required for I
frames in contrast to P frames. The reaction speed in terms
of quality adjustment on longer saccades is a general problem
in foveated video coding. This might be mitigated by higher
framerates, which desired anyways in certain scenarios, such
as video game streaming.

As the human eye is more sensitive to abrupt contrast
changes and motion in peripheral vision [4], we assume that
the discernibility of changes in coarsely quantized blocks can
be reduced by simple post-processing such as blurring.
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