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Abstract

Scale-invariance is an open problem in many computer vision subfields. For example, object labels
should remain constant across scales, yet model predictions diverge in many cases. This problem gets
harder for tasks where the ground-truth labels change with the presentation scale. In image qual-
ity assessment (IQA), down-sampling attenuates impairments, e.g., blurs or compression artifacts,
which can positively affect the impression evoked in subjective studies. To accurately predict per-
ceptual image quality, cross-resolution IQA methods must therefore account for resolution-dependent
errors induced by model inadequacies as well as for the perceptual label shifts in the ground truth.
We present the first study of its kind that disentangles and examines the two issues separately
via KonX, a novel, carefully crafted cross-resolution IQA database. This paper contributes the fol-
lowing: 1. Through KonX, we provide empirical evidence of label shifts caused by changes in the
presentation resolution. 2. We show that objective IQA methods have a scale bias, which reduces
their predictive performance. 3. We propose a multi-scale and multi-column DNN architecture that
improves performance over previous state-of-the-art IQA models for this task, including recent
transformers. We thus both raise and address a novel research problem in image quality assessment.
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1 Introduction

The discipline of image quality assessment (IQA)
aims to model how humans perceive the quality
of digital images. Recent no-reference (NR-)IQA
algorithms predict quality scores for a given input
without a pristine reference. They perform well
when tested on the same domain as they were
trained on; however, model performance drops
when cross-tested on different datasets [1–3]. We
hypothesize that this decrease in performance is

caused by two factors: a lack of cross-resolution
generalization by the models and domain shifts
across datasets. The latter is concerned with
image contents and differences in the distributions
of distortion types, combinations, and their sever-
ity. We aim to isolate the first factor, which is
also known as the cross-resolution problem, for
image quality assessment. To this end, we created
a first-of-its-kind dataset that provides a reliable
benchmark for cross-resolution IQA. By resolu-
tion we mean image size in pixels, which is to
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Fig. 1: Scaling affects both human perception and influences IQA model predictions.

be distinguished from resolution as pixel densi-
ties. On a display these are expressed in terms of
dots or pixels per inch (DPI/PPI), whereas on the
viewer’s retina a notion of angular resolution is
better suited, as illustrated in Fig. 2.

Previous works in NR-IQA [1–5] assumed that
the quality ratings of images gathered at one pre-
sentation resolution are valid at other resolutions
as well. This is not the case. We subsequently show
that perceived quality varies with the presentation
resolution. When comparing images across reso-
lutions, we get only a 0.93 Spearman rank-order
correlation coefficient (SRCC) between their mean
opinion scores (MOS) when the scale ratio is 4:1,
compared to a 0.97 SRCC when it is 2:1. Reliable
IQA for modern high-resolution images is desir-
able, as it could pave the way for its wider applica-
tion beyond academic research. Existing NR-IQA

physical logical
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Fig. 2: The term resolution can be ambigu-
ous. In this paper we use it for the logical
image size of w×h pixels. Presenting an image
on a screen, possibly interpolated, yields a phys-
ical resolution, which defines the image’s spatial
dimensions and pixel density. What matters most
for the human visual system is the perceivable
angular resolution, which depends on the physi-
cal pixel density on the screen, the distance d to
the screen, and the minimal discernible angle α.
The result is a representation of the image on the
retina, which in turn evokes an impression in the
visual cortex.

methods do not perform well in cross-resolution
settings. This is in part because existing IQA
databases are annotated at comparatively low res-
olutions and because the prevalent approach is to
train and test them on images that were resized
to the same scale [1, 2, 5].

Some existing IQA datasets (e.g. [6]) contain
images of various resolutions. However, there is
none that was annotated at multiple resolutions,
but the images were either scaled to a fixed presen-
tation size or presented in their native resolution
with different spatial sizes on screen. Rigorous
cross-resolution comparisons on the same content
were thus not possible. To address these limita-
tions, we created KonX, a database in which the
same image contents were annotated at multiple
presentation scales. It serves as the first cross-
resolution benchmark and allows to test quality
predictors at multiple resolutions.

1.1 Contributions of this Work

We introduce a novel problem, create a database
that allows us to approach it for the first time,
propose a DNN architecture that surpasses the
state of the art, and add validation considerations
that allow proper comparisons of cross-resolution
model performances. In greater detail:

1.1.1 A Novel Problem

The cross-resolution problem in NR-IQA arises by
distinguishing between cross-content and purely
cross-resolution predictions. The latter approach
removes the confounding variable of image content
from our experiments. This has not been studied
before: previous IQA datasets only provided one
annotation resolution per content and particularly
for crowdsourced studies it is often unclear how
well the annotation resolution was controlled for
in the actual studies [1, 6–8].
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1.1.2 A New Dataset

KonX shows that the label shift is significant
and that current NR-IQA models are unable to
account for it. We took multiple measures to
achieve precise annotations:

i) By inviting expert freelancers as participants.
ii) By conducting a longitudinal study in which

all items were rated twice, which provides
valuable information about participant relia-
bility, self-consistency and attention levels.

iii) By controlling the presentation size. Our
interface renders logical pixels 1:1 to screen
pixels, which was not ensured for any previ-
ous NR-IQA dataset.

1.1.3 A DNN Architecture Proposal

In multi-column architectures, weights are usu-
ally shared between columns to limit the capacity
and prevent overfitting. We employ a transfer-
learning backbone in a multi-column architecture
with individual weights that still does not over-
fit. The key is to feed different resolutions to each
column and create a bottleneck before combining
per-column features. We also integrate informa-
tion from multiple levels of the network, i.e., from
all psedo-repeated modules of the EfficientNet

backbone. These scale-variant features further
improve the cross-resolution performance.

1.1.4 Validation Considerations

Absolute score prediction is crucial in cross-
resolution IQA, as the ground-truth MOS changes
with the image resolution. By validating NR-IQA
methods on absolute errors and rank correlation
to ground-truth, we demonstrate the limitations
of singular metric choices. Our model outper-
forms recent competition in cross-database and
cross-resolution comparisons w.r.t. both metrics.

2 Related Work

2.1 IQA Models

Perceptual quality prediction evolved from sta-
tistical methods [11, 12] to an application area
of deep learning. Most approaches crop or scale
their input to a fixed, usually small resolution
[3, 4, 13–18]. We aim to make IQA applicable at
resolutions that are relevant in practice and focus

on no-reference or blind IQA models, which take
only the distorted image as an input and predict
a quality score directly [2, 5, 19]. In comparison to
full-reference IQA scenarios, where one has access
to both the distorted image and a usually pristine
original, the performance of NR-IQA methods in
cross-resolution and cross-database tests is signif-
icantly reduced, especially on [6, 7]. This is due to
a more general problem in computer vision: scale
variance [20], which in this case manifests itself as
the cross-resolution problem.

Regarding model architectures we took inspi-
ration from successful and recent works, of which
some already leaned towards improving robustness
against input scale variance. Aggregating acti-
vations of multiple layers of pre-trained CNNs
through a second network for example has shown
success in image aesthetics assessment (IAA) [21,
22]. This inspired us to employ multi-level spa-
tially pooled (MLSP) features in our proposed
architecture as well. We noticed that CNNs [1]
still perform well on KonIQ even in compari-
son to transformer-based architectures [18, 23],
in this case with SRCCs of 0.921 (KonCept-512)
vs. 0.916 (MUSIQ) and 0.915 (Golestaneh et al.).
One hypothesis is that the use of both multi-
scale inputs and multi-level features would be
beneficial for cross-resolution prediction. Further-
more, it is unclear if transformers perform better
in IQA than traditional CNNs, especially so for
cross-resolution tasks.

Some works on full-reference IQA [24, 25] inte-
grate information from downscaled versions of
their input internally. However, they’re only eval-
uated on predictions for a single fixed resolution,
so they don’t approach the problem of resolution-
dependent scores. NR-IQA models additionally
have to intrinsically encode both the knowledge
about visual distortions and their connection to
the image resolution. Only a few attempts on
multi-scale approaches in NR-IQA [23, 26] have
been made. We considered adding explicit infor-
mation about the scale similar to [23], but [27] has
shown that CNNs can infer the input dimensions
by using the 0-padding that is added to images
before convolution kernels are applied. Another
factor to consider is the prediction target. Three
main types are found in the IQA literature: a
single rating per image [1], the distribution of rat-
ings from multiple annotators [3, 23] and scale-free
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(a) 2048 × 1536 (b) 1024 × 768 (c) 512 × 384 (d) 256 × 192

Fig. 3: The cross-resolution problem: Grad-CAM [9] heatmaps depict aberrant regions-of-interest for the
top predicted class of an InceptionResNetV2 [10]. Analogous difficulties in CNN-based IQA methods are
even more delicate, as perceptual quality varies with scale, unlike object class labels.

rankings rather than absolute ratings [5, 28]. This
work aims to predict a single rating per image, as
accurately as possible across resolutions.

The MSE loss is a reasonable choice due to its
characteristics when training for absolute scores.
In our experiments, it did not perform worse than
alternatives even when the evaluation metric is
Spearman’s rank correlation coefficient between
predictions and ground-truth ratings [1], as com-
monly used in IQA. This applies to all three types
of losses previously mentioned, including the scale-
free rating loss introduced by Li et al. [5]. The
latter work’s improved performance seems to be
primarily due to the choice of training resolution,
rather than the loss itself, and though it appears
to converge faster in the early epochs, there is no
clear overall advantage compared to the MSE.

2.2 Scale Generalization

We incorporated works on scale generalization and
transfer-learned CNNs in order to build a model
that accurately predicts quality scores across res-
olutions. The base architecture, usually a pre-
trained (e.g., on ImageNet) feature extractor, is a
key choice. We expect newer architectures to gen-
erally improve performance, but multiple factors
play a role. ImageNet CNNs are usually trained at
small resolutions, many at 224× 224 pixels, up to
800× 800 for EfficientNet-L2 [29]. Pre-training on
such small resolutions might limit the performance
in large-resolution IQA. InceptionResNet-v2 was
applied successfully in IAA [22] on AVA [30],
an aesthetics database that contains images of
various resolutions (up to 800 × 800). It outper-
formed other proposals in the past years since
its introduction, which raises the question: what

makes this particular architecture more suitable
for cross-resolution tasks?

Recent quality and aesthetics models [5, 22,
31] combine activations from multiple layers of
pre-trained backbone models. Later-stage layers
of ImageNet models usually represent abstract,
scale-invariant concepts [27], whereas earlier lay-
ers tend towards scale-dependent features. IQA
depends on both, e.g., object classes and pixel-
level distortion patterns. This explains the benefit
of integrating information from multiple layers of
an object classification network for IQA.

CNNs trained on a single resolution [27, 29]
exhibit scale-wise overfitting, which can be mit-
igated by multi-resolution ensembles [32]. Multi-
column architectures have shown success in crowd-
counting [33–36], which involves varying object
scales within single images. Again, this integrates
information from multiple scales: [33] feed rescaled
images to a shared-weight CNN column. Most
crowd-counting works use directly trained custom
architectures for the task, but we consider pre-
trained networks as columns in hopes that they
can jointly handle different scales.

2.3 Databases

IQA datasets are classified into two types: those
with artificially distorted images and those with
authentically distorted images. The former are
derived from pristine originals by applying dis-
tortions of various types and magnitudes, either
single or in combinations [8, 37–39]. This class
has been criticized for lacking diversity due to the
comparatively small sets of source images and the
limited variety of distortions. Models trained on
it have poor generalization to new impairments
[40]. On the other hand, authentically distorted
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IQA databases are usually sampled directly from
online photography communities. The images are
affected by mixtures of naturally occurring distor-
tions. The state of the art for general authentically
distorted IQA databases is currently KonIQ-10k
[19], with 10,073 images. SPAQ [41] is the largest
domain-specific authentic dataset with 11,125
images taken with smartphone cameras.

Another subclass of databases focuses on local
image quality, a concept introduced by KonPatch-
30k [14] and extended through Paq-2-Piq [6].
They allow to compare the quality of patches with
that of the entire image, which generalizes the
concept of a global MOS to local image quality.

However, using only these existing IQA
datasets, one cannot reliably study the cross-
resolution problem. Though there are datasets
that annotate different images, or crops thereof, at
different resolutions, such as SPAQ [41] and Paq-
2-Piq [6], no dataset so far annotated the same
image contents at multiple presentation resolu-
tions. This means neither the subjective percep-
tual shifts across resolutions, nor the reason why
IQA models perform poorly in cross-resolution
(and cross-dataset) tests is studied thoroughly.

Our proposed dataset, KonX, allows to prop-
erly validate the cross-resolution performance of
IQA models for the first time by comparing predic-
tions versus three resolution-specific mean opinion
scores. We conducted a crowdsourcing-based user
study to obtain subjective ratings specifically for
the cross-resolution testing. We anticipate that
our work will pave the way for new directions in
image quality research.

2.4 Subjective Factors in QoE

Previous studies in which existing IQA databases
were annotated did not consider well-known
aspects of quality of experience (QoE). Reiter
et al. [42] introduced three classes of influence
factors (IFs) in this regard: Human IFs affect
the lower-level (visual acuity, age, mood, etc.)
and higher-level (cognitive processes, personality
traits, expectations, etc.) perception of quality.

System IFs are related to content, network,
and device aspects (screen resolution, display size,
etc.), while context IFs are affected by the envi-
ronment (temporal, social, technical peculiarities,
etc.). Many Reiter IFs are difficult to study, espe-
cially in crowdsourcing, where control mechanisms

are lacking and self-reports can be unreliable. Sev-
eral studies [43–49] report on the influence of
the display device (System IF) on the perceived
quality, especially regarding device characteristics.

The visual resolution [50] of an image presen-
tation imposes a limit on the pixels that are dis-
cernible by the human visual system. It depends
on the display size, its physical resolution, the
mapping from virtual- to physical pixels, the view-
ing distance, and finally, the viewer’s physiological
capabilities, as shown in Fig. 2. Opposing effects
can occur when altering the visual resolution:

• Presenting a pristine image at a higher visual
resolution can increase its perceptual quality,
as additional details become visible [51].

• A reduced visual resolution of a degraded
image can mask impairments, which in turn
can also increase perceptual quality.

Both effects play a role in quality assessment but
have not been considered in previous works, let
alone handled consistently. Moorthy et al. [43] pre-
sented videos centered on mobile screens, while
Gong et al. [44] resized images to ensure a constant
physical size. On the other hand, Zou et al. [46]
and Kara et al. [48] opted for full-screen, rescaled
as needed. The source images were not always the
same size as the screen resolution.

Rehman et al. [45] did not state what the pre-
sentation size was, but it can be assumed to be
full-screen. None of the authors mention possi-
ble discrepancies between the virtual and physical
resolutions. This is relevant nowadays, especially
when presenting images in browser-based user
interfaces due to the reliance on rendering at vir-
tual resolutions that are smaller than the physical
ones. Apple Retina displays, for example, have
ratios between the physical and virtual resolution
up to 3:1. We consider these aspects in our study
and control for them as much as possible.

The viewing distance (Human/Context IF)
between participants and the screen was consid-
ered before. Studies involving 4K TVs [48] deemed
it essential to be controlled, less so those on
mobile and desktop devices [43, 46]. The latter
emphasizes the freedom to choose one’s preferred
viewing distance to best express natural behav-
ior instead of enforcing strict, possibly awkward
or even uncomfortable scenarios, e.g., chin rests.
Following this line of reasoning, we did not expect
participants in our study to maintain a fixed view-
ing distance. It is not only difficult to enforce



Springer Nature 2021 LATEX template

6 KonX

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0.00

0.05

0.10

0.15

score range

va
ria

nc
e

database
KonIQ−10k

KonIQ−10k (in KonX)

KonX

KonX (in KonIQ)

LIVE Challenge

SPAQ

Fig. 4: Variance versus MOS of authentically distorted, crowdsourced datasets. The SOS-hypothesis a
values for KonX, KonX scores at 1024 × 768 for the subset of images sampled from KonIQ-10k, KonIQ-
10k, KonIQ-10k scores for the subset of images sampled for KonX, Live Challenge, and SPAQ are 0.071,
0.067, 0.091, 0.095, 0.184, and 0.107 respectively. The 95% confidence interval for a is indicated by the
shaded region around the main curve.

this in crowdsourcing, but feeling uncomfortable
might reduce the participants’ ability to focus on
the assessment task and negatively affect their
judgments.

3 The KonX Database

Our novel cross-resolution IQA database KonX
was annotated with subjective quality scores at
three presentation resolutions. It is primarily
intended as a benchmark for IQA models. With its
emphasis on annotation reliability, it allows for the
first time to investigate the relationship between
perceived quality and scale.

3.1 Introduction Overview

KonX consists of 210 images from Flickr1, which
were already included in KonIQ-10k [1], and
another 210 images from Pixabay2 to supplement
the high-quality range. The images were sampled
using a stratified approach based on discretized
metadata and other image properties. We aimed
to diversify both their perceptual quality lev-
els and contents. We center-cropped all Pixabay
candidates, and smart-cropped [19] the KonIQ-
10k original images to an aspect ratio of 4:3.
These were then downsampled using the Lanczos-
interpolation to three resolutions: 2048 × 1536px,
1024 × 768px and 512 × 384px.

Eighteen freelancers3 with a professional back-
ground in photography or graphics design rated

1https://flickr.com
2https://pixabay.com
3http://freelancer.com

each image twice at each resolution. The study
participants were thoroughly screened for their
ability to detect image defects. We deployed a cus-
tom web interface that ensures a 1:1 rendering of
virtual image pixels to physical screen pixels with-
out scaling, thus displaying the lower-resolution
images at a smaller spatial size. This experimental
setup resulted in 45360 annotations of 420 image
sources at three resolutions. We now explain and
justify the choices behind KonX in detail. The
most important facts are summarized in Table 1.

Table 1: KonX: A Cross-Res. IQA Benchmark
Sources Flickr (KonIQ-10k) and Pixabay
#Images 210 from each source
Resolutions 2048× 1535px, 1024× 768px, 512× 384px
Participants 19 in the full study
Annotations 2 per image at each resolution, 45360 in total

3.2 Content Preparation

When creating an image database, one of the main
goals is to reduce potentially unknown biases,
which stem from shared characteristics among
images. This can be mitigated by enforcing diver-
sity through adequate sampling strategies. Similar
goals have been set for previous IQA [1] and VQA
[52] datasets. We incorporated several means to
diversify KonX with respect to perceptual qual-
ity as the primary attribute as well as auxiliary
aspects such as image content.

https://flickr.com
https://pixabay.com
http://freelancer.com
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3.2.1 Data Sources

We sampled from two online photography plat-
forms: Flickr1 and Pixabay2. All candidate images
from Flickr were already included in KonIQ-10k
[1], which provides preexisting MOSes for com-
parison. This set was augmented with content
from Pixabay, which offers mostly high-resolution
images. The goal was to supplement the high-
quality range in which KonIQ-10k is lacking.

3.2.2 Resolution and Aspect Ratio

Candidate images from both sources had be larger
than 2048×1536px and have aspect ratios between
[1.315, 1.785] to retain similarity. We extracted
image content at 2048 × 1536px, 1024 × 768px
and 512 × 384px by cropping the original images
to an aspect ratio of 4:3. We cropped the cen-
ter part of the image for Pixabay, and used
the smart-cropping [19] procedure for KonIQ-10k.
The crops were then downsampled to 2048 ×
1536px and the aforementioned lower resolutions
using Lanczos interpolation. On the Flickr subset,
this enforced identical image portions as published
in the KonIQ-10k dataset at 1024 × 768px.

3.2.3 Stratified Attribute Sampling

Our sampling strategy relies on stratified discrete
attributes, for which Flickr and Pixabay provide
different tags and metadata. The occurrence fre-
quencies of unique values were treated as “levels”,
over which we aimed for uniformity. We addi-
tionally included machine tags from [53] for the
Flickr candidates. The pre-existing MOSes from
KonIQ-10k were quantized into equal-length bins
to fit into our discrete approach. For the Pix-
abay candidates, we considered the camera model,
user-assigned tags and incorporated normalized
favorites F̃ (I). This measure is calculated as fol-
lows, where F (I) is the number of “favorites” that
image I received on the Pixabay platform and
V (I) is the total number of times it was viewed :

F̃ (I) = ln(F (I) + e)/ ln(V (I) + e) (1)

On the admissible 7818 Flickr and 757.016 Pix-
abay images, we iterated the following procedure,
thereby sampling 210 images from each source:

i) Randomly select an attribute.
ii) Randomly select one of its available “levels”.

iii) Keep the images corresponding to this choice.
iv) On this subset, continue alike with step i)

After all attributes have been considered, the pro-
cedure either returns a single image or a set of
images. In the latter case, we chose one image at
random.

3.3 Subjective Annotation Study

In order to establish a benchmark that allows
meaningful comparisons across resolutions, we
had to design a reliable subjective study, which
we ensured by several means. Similar to the
work presented in [54], we invited participants on
freelancer.com. The candidates were pre-filtered
based on their previous experience, mostly in pho-
tography or graphic design, and finally evaluated
with regard to their practical abilities to rate the
quality of images. They had to pass multiple tests
in order to qualify for our main study.

3.3.1 Quality Assessment UI

We developed a custom web interface that allows
to control the image presentation scale and thus
enables reproducible studies. It ensures that vir-
tual image pixels are displayed as physical screen
pixels in a 1:1 fashion. We account for devices
where the virtual resolution used in the rendering
stage differs from the actual physical resolution of
the screen. Ratings were assigned through a slider
on a scale from 1 to 100 (%), which showed labels
according to the standard absolute category rat-
ing (ACR) scheme. A depiction of our interface is
given below in Fig. 5.

Fig. 5: Image quality assessment viewer (IQAVi).
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Fig. 6: Scatterplots of KonX MOS scores by annotation resolution.
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3.3.2 Participant Filtering

We conducted a qualifier experiment as a contest
on freelancer.com. Instructions were given on
how to identify distortions, how to judge the over-
all quality of an image and how to use the rating
scale correctly. We carefully explained that judg-
ments should be made independent of the image
resolution, as larger presentations are not neces-
sarily better in terms of quality. We required a
screen diagonal size above 14 inches with a reso-
lution of at least 1920 × 1080 pixels and rejected
participants with smartphones and small tablets.

While most device checks were fully auto-
mated, additional information was gathered
through self-reporting from the participants. We
stored both the reported and the measured charac-
teristics of all devices that were used in the study.
Participation in a training phase was mandatory
for all freelancers. It consisted of 50 images for
which we had ground-truth ranges of quality rat-
ings. Upon failing to submit a rating within these
bounds we displayed the range of acceptable values
and users were required to retry until successful.
We forced them to keep their browser window

maximized during the study. In IQAVi, panning
of the currently displayed image allows assessing
peripheral content if the image resolution exceeds
that of the screen, so those with FHD displays
could view the 2048 × 1536px images in their
entirety. We logged the image area in view, as
well as the timestamps of annotations and other
interactions throughout the experiments for each
participant individually.

3.3.3 Main Annotation Study

The images in the main study were presented
in randomly ordered batches of 50. Each batch
contained two repetitions of 25 images of a sin-
gle resolution. Participants could not check their
previous annotations to avoid fraudulent positive
effects on their self-consistency. We required them
to retry batches on which they failed to meet a
SRCC of 0.9 between their two ratings.

It was rarely necessary to repeat a batch, but
when that was the case, almost all batches met
the requirements after a single repetition. A par-
ticipant was asked to repeat a specific batch at
most once. The mean of both ratings for an image
usually performs better than a single score, as con-
firmed by computing the correlation to KonIQ-10k
MOSes (Fig. 7).

3.4 Data Analysis

Reliable, thus reproducible annotations are impor-
tant for IQA datasets in general, but especially so
for KonX due to its primary purpose as a bench-
mark. To characterize KonX and to compare it to
other datasets, we consider a number of measures.
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We plot the distribution of inter-user correla-
tions in Fig. 8, measure the intraclass correlation
coefficient (ICC) in Fig. 9 and investigate the SOS-
hypothesis [55] in Fig. 4. The SOS-hypothesis [55]
provides an indicator of reliability that accounts
for the distribution of MOSes within a dataset.
The central point is that the variance of the rat-
ings is constrained by their possible range. If an
image MOS is closer to the boundaries of the rat-
ing scale, its variance should be smaller than for a
MOS at the center of the scale. The a coefficient
of a parabola fitted to the variance vs. MOS plot
serves as an indicator of reliability. Larger a means
a larger SOS-normalized variance, which implies
less agreement between ratings. Figure 4 shows
SOS plots for several databases, including subsets
of KonX and KonIQ-10k. The ICC(1, 1) coeffi-
cient, a one-way random effects single score model
[56, 57], measures the absolute agreement between
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Fig. 9: ICCs [56] for authentically distorted IQA
datasets. For LIVE Challenge and SPAQ they are
approximated based on the MOS and standard-
deviations and likely overestimated. The ICC is
not always easily comparable across datasets,
as it measures the fraction of the total vari-
ance accounted for by the per-image (intraclass)
variance. Thus, the ICC tends to be larger for
databases with a larger spread of the MOS.

participants. This is reasonable, as we have to
compare datasets with partial observations. The
ICC is proportional to the variance of the image
scores, which is related to the variance of per-
image MOSes and roughly inversely proportional
to the total variance of all ratings.

It is thus sensible to compare ICCs on the same
image subset. For the shared 210 images at 1024×
768px this indicates improved reliability for KonX
over KonIQ-10k, as shown in Fig. 9. Comparing
KonX subsets by resolution suggests that larger
images are rated more reliably with better agree-
ment. Furthermore, the inter-user correlations in
Fig. 8 also indicate that quality assessment might
indeed be easier at higher resolutions. This prob-
ably is related with the larger difference in quality
between the best and the worst images at high
resolutions.

3.4.1 Label Shifts

We display scatter plots of the MOSes of the
same image contents compared by resolution in
Fig. 6. They show curved trends, which match
our hypotheses about effects of down-scaling from
Section 2.4 quite well. We observe a pronounced
preference for the lower resolution in medium
quality images, resulting in the shift to the right.
There are only few samples at the low-quality end,
but the plots indicate that there is a smaller dif-
ference in perceptual quality here, i.e. the images
look bad regardless of their resolution.

We additionally plot the histograms for the
MOS scores per resolution in Fig. 10. To formally
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Fig. 10: Histogram of KonX MOS by resolution.
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confirm that there exists a statistically signifi-
cant difference between the resolution-wise mean
opinion scores in KonX we conducted a Wilcoxon
signed-rank test for all pairs of resolutions, which
is a non-parametric alternative to the popular t-
test. The results were significant with p < 0.005
for all pairs.

3.4.2 Summary

We conclude from this analysis that KonX is
reliably annotated, especially in contrast to previ-
ous works. This is likely due to multiple factors,
including the following design choices we made:

i) Usage of a fine-grained annotation scale
instead of the traditional five-point ACR.

ii) Consistency checks of the participants, as all
items were repeated twice in the study.

iii) Noise-reduction by averaging the repetitions
for each participant individually.

iv) A high(er) level of control, especially by
rendering image pixels 1:1 to screen pixels.

4 Cross-Resolution Prediction

Our model architecture is inspired by several
observations from the literature regarding the
properties of features from different CNN lay-
ers, their scale dependence, and their effect on
transfer learning. Scale-dependence is obvious for
individual filters, meaning that they can only
detect patterns of a fixed size. This is less evi-
dent for groups of filters or the usual cascades
of convolutions used in deep CNNs. ImageNet
models for example achieve a certain degree of
scale-invariance of object classes only close to the
last layers [27]. We considered multiple aspects:

Train-Test Scale Discrepancy: Object clas-
sification models that were trained closer to the
test resolutions perform better after fine-tuning,
which we expect to hold for IQA as well [58].

Scale-Agnostic Features: Following the
observations of Graziani et al. [27] on scale-
invariance, the prevalent use of late-stage features
could be suboptimal for quality assessment.

Multi-Level Binding: The connection
between the backbone and head network is tradi-
tionally based on the outputs of a single late-stage
layer. Cross-task learning might be limited by

this, as the success of multi-level features in
well-performing architectures [5, 22] suggests.

Resolution Overfitting: Modern DNN
architectures for NR-IQA accept one input size at
a time. We found in our limited experiments that
training such models on multiple resolutions did
not improve their cross-resolution performance,
on the contrary, it often decreased it. Learning
scale-specific features on only one common net-
work architecture seems to be a limitation of this
approach, at least in practice with limited time
and training data.

4.1 NR-IQA Model Architecture

To get around these difficulties with our architec-
ture we made the following design choices:

• An EfficientNet-B7 [59] pre-trained at 600 ×
600px serves as a backbone, which is close to
our targeted resolutions and has been shown
to be tweakable regarding input scales [29].

• The Inception-MLSP approach from [22]
gets adapted to EfficientNet by substituting
Inception-module output activations with an
inner layer of the EfficientNet-modules.

• We train a two-column network, similar
to those used for scale-invariant detection
[33–36], at different input resolutions. This
enables the deep integration of column-wise
MLSP-type features, synergizing with the
proposed shallow-binding fix.

The proposed Effnet-2C-MLSP is depicted
in Fig. 11. It consists of two columns (2C)
of MLSP [22] blocks based on independent-
weights EfficientNet-B7 backbones. These were
pre-trained on ImageNet-1000 at 600×600px as a
middle ground for the fine-tuning at 512 × 384px
and 1024 × 768px.

Both columns feed into a cascaded multi-layer-
perceptron (MLP) head. Features are sampled
by global average pooling (GAP) the activa-
tions of the project bn layers; this is differ-
ent from Inception-MLSP features [22, 39] which
stem from mixed layers. Their analog in ResNet-
architectures would be the add layers at the end
of each module, which are redundant due to
the residual connections. Since the immediately
preceding layers use dropout normalization, we
extract the outputs from two layers before. In our
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Fig. 11: The proposed Effnet-2C-MLSP two-column NR-IQA architecture. The yellow-dotted section on
the left figure describes the single-column (1C) variants, P.BN K refers to the project bn layers.

preliminary experiments neither the add nor the
dropout activations performed better.

The project bn features contain about 12000
scalar values, which we downsize to 1024 through
separate dense layers for each column before
passing them to the MLP head; the downsizing
significantly reduces the number of parameters
needed. This hierarchical combination allows for a
greater level of per-scale differentiation of the col-
umn features through backpropagation compared
to simply adding the features together. The mod-
els are trained to predict a single mean opinion
score (MOS) directly, steered by the MSE loss.

4.2 Training Data

KonX is now available as a test set, but there is
no cross-resolution equivalent that is sufficiently
large for training. Existing datasets [6, 7, 19, 41],
for which each image was presented for rating at
a single resolution 4 limit training to this respec-
tive annotation resolution. We can mitigate this
shortcoming by exploiting a data overlap.

Fitting quadratic functions that map MOS
scores from KonIQ-10k to each of the resolu-
tions in KonX allows to align the scores between
datasets and resolutions. We propose this as a bet-
ter approximation of the underlying ground-truth
labels than using the KonIQ-10k 5 scores for differ-
ent resolutions directly. This adaptation reduces
the MAE by 12.8% and the MSE by 20.3% over
all three resolutions, as determined on a test-set
of 70 images that were not utilized in the curve
fitting, as shown in Fig. 12.

4Paq-2-Piq [6] patches have to be considered as entirely dif-
ferent images because the placement of the patch sampling
affects their perceptual quality.

5KonIQ-10k was annotated at 1024 × 768px.

We excluded the 210 images sampled for KonX
from KonIQ-10k and created a 5-fold train/test
split with the property that one of the test sets
is a subset of the original KonIQ-10k test set.
Each model under consideration is trained and
evaluated on all folds. We report performance indi-
cators for each KonX subset in Table 3 and show
cross-test results on other datasets in Table 2.

4.2.1 Training Strategy

Training of Effnet-2C-MLSP was conducted in
two stages. First, we kept the weights of the
MLSP blocks fixed and trained just the head. This
already achieves close to optimal performance and
converges fast. In the second stage, we fine-tuned
both columns jointly, but did not update the batch
normalization layers. Each stage is run for at most
40 epochs, with early stopping in 10 epochs if the
validation loss does not improve.

The learning rates for the two stages were
10−5 and 10−4, respectively. Incrementally fine-
tuning one column at a time resulted in inferior
results. The only augmentation we used was hori-
zontal flipping of images, doing this independently
per column improved performance marginally. We
feed the entire image at a time. In our exper-
iments, cropping the images did not provide a
performance improvement.

Initial experiments with the Adam and SGD
optimizers lead to unsatisfactory performance.
The large resolutions and small batch sizes caused
divergence, and the training loss increased rapidly
after the first few epochs of the second stage.
In order to reduce the effect of large gradi-
ents, we used gradient clipping (clipnorm=1.0),
which worked well. We ultimately switched to the
NAdam [60] optimizer with Nesterov momentum.
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Fig. 12: Quadratic mapping from KonIQ-10k MOS to KonX at all three resolutions to align the scores
for training at different resolutions on KonIQ-10k and evaluation on KonX. The blue markers were kept
as a test-set to determine the quality of the fit. At 1024 × 768px the scores are essentially just shifted.

4.2.2 Model Performance Evaluation

Our Effnet-2C-MLSP was evaluated by feeding
each column a different version of the same image:
For the low-resolution column, images were always
resized to 512×384px. The other column received
the original image size. When testing on e.g.
2048 × 1536px KonX images, a downscaled 512 ×
384px version was presented to the low-resolution
column, and the 2048 × 1536px original to the
other one. We cross-validated on 5-folds. The test
sets are non-overlapping. The training database
used was the remapped KonIQ-10k, after remov-
ing the 210 images that are shared with KonX.
Thus, each set (training, validation, and test) is
slightly smaller than the official splits published
for KonIQ-10k.

We compare to previous works on KonX and
the KonIQ-10k [1] test set as well as in cross-tests
on LIVE-ITW [7] and SPAQ [41]. Table 3 shows
correlations per subset, split by training and test
resolution as well as data source. We trained and
tested KonCept-512 [1], LinearityIQA [5] and an
EfficientNet-based derivative (ours) of NIMA [3]
for an up to date comparison.

An ablation study on the backbone network
selection is included in the table. The EfficientNet-
B7 was replaced in IRN-2C-MLSP with an Incep-
tionResNetV2, which, as previously stated, was
successfully used in many IQA related experi-
ments. As suggested by Fig. 3, this architecture
suffers from cross-resolution discrepancies and is
indeed outperformed by the EfficientNet-based
architecture. An overview of the SRCC and MSE
performances is given in Fig. 13, which shows
that Effnet-2C-MLSP is highly performant, with
respect to its accuracy and correlations with the
ground-truth. Effnet-2C-MLSP also performs best
when evaluated against the KonIQ-10k test set
and across test sets on Live ITW and SPAQ (at
1920×1080px) as shown in Table 2. Absolute error
metrics (MSE) are crucial on KonX. The concen-
tration of images at the top of the quality scale
results in lower correlations on the Pixabay sub-
set, making it more difficult to distinguish model
performances. Nonetheless, our proposed model
excels on both metrics.

Models KonIQ-10k Live Challenge SPAQ

SRCC PLCC SRCC PLCC SRCC PLCC
LinearityIQA 0.9299 0.9415 0.8114 0.8404 0.8442 0.8422
Effnet-NIMA 0.7635 0.7788 0.6886 0.7269 0.7896 0.7936
IRN-1C-MLSP 0.8601 0.8932 0.8005 0.8310 0.8523 0.8553
Effnet-2C-MLSP 0.9490 0.9596 0.8327 0.8595 0.8641 0.8641

Table 2: Cross database tests: training was conducted on KonIQ-10k, testing on the respective datasets.
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Model
Training

Resolution
SRCC PLCC

512 × 384px 1024 × 768 2048 × 1536 512 × 384px 1024 × 768 2048 × 1536
KonIQ Pixabay KonIQ Pixabay Koniq Pixabay Koniq Pixabay Koniq Pixabay Koniq Pixabay

KonCept
512 0.8807 0.3047 0.8264 0.2703 0.6821 0.3112 0.8535 0.3049 0.7522 0.2670 0.6016 0.2690
1024 0.8251 0.2658 0.8888 0.4175 0.8165 0.4518 0.6968 0.2658 0.8845 0.4201 0.8420 0.4926

Effnet-NIMA
512 0.8506 0.3101 0.7648 0.3739 0.5505 0.4010 0.8357 0.3682 0.7664 0.4118 0.5928 0.3972
1024 0.8568 0.2506 0.8840 0.3184 0.8185 0.3925 0.8449 0.3105 0.8849 0.3895 0.8423 0.4503

LinearityIQA
512 0.9436 0.3818 0.9111 0.3994 0.7611 0.4485 0.9416 0.4681 0.9068 0.4670 0.7933 0.4859
1024 0.9141 0.3849 0.9452 0.4519 0.9023 0.4935 0.9087 0.4311 0.9435 0.4813 0.9115 0.5291

IRN-1C-MLSP
512 0.9279 0.3197 0.9093 0.3490 0.8072 0.4501 0.9274 0.4155 0.9046 0.4355 0.8326 0.4967
1024 0.8949 0.3117 0.9320 0.4190 0.9076 0.5037 0.8992 0.4003 0.9313 0.4876 0.9160 0.5596

Effnet-2C-MLSP
512 0.9273 0.3955 0.9056 0.4457 0.7900 0.5149 0.9248 0.4689 0.9035 0.5063 0.8252 0.5391
1024 0.8918 0.3762 0.9358 0.4844 0.9105 0.5415 0.8957 0.4443 0.9361 0.5422 0.9228 0.5857
both 0.9234 0.4058 0.9426 0.4715 0.9276 0.5132 0.9251 0.4783 0.9437 0.5220 0.9325 0.5596

Table 3: Correlations on KonX subsets when training and testing at different resolutions. SRCC and
PLCC is the Spearman’s Rank and Pearson linear correlation coefficient.

5 Conclusions

This paper introduced the cross-resolution NR-
IQA problem, which is a step toward assessing
modern high-resolution images with computer
vision models. We made significant progress in
predicting the quality of authentically distorted
images of various sizes. For that purpose, we
introduced KonX, a benchmark dataset crafted
specifically for cross-resolution IQA.

It includes 420 images from two source
domains and is reliably annotated at three pre-
sentation resolutions through a subjective study.
For the first time, the database allows for the
study of the effects of cross-resolution independent
of cross-content, while also allowing for cross-
domain experiments by splitting on the data

source. We additionally established a solid foun-
dation for cross-resolution prediction with our
Effnet-2C-MLSP model, which achieves state-of-
the-art performance also across databases.

As auxiliary results, we tapped into the impor-
tance of the pre-training resolution relative to
the post-fine-tuning performance regarding scale-
overfitting, the usage of multi-level features with
varying levels of scale-variance and the applica-
tion of column-wise multi-scale training in IQA.
Considering these aspects surely helped, but they
are far from being completely understood. Our
work thus opens up new avenues for research in
this field, such as developing computationally less
intensive architectures and adapting advances in
IQA to video quality assessment.

0.11

0.13

0.16

0.18

0.20

0.74 0.78
SRCC

R
M

S
E

Model name

Effnet−1C−MLSP
Effnet−2C−MLSP
Effnet−NIMA
IRnet−1C−MLSP
Koncept
LinearityIQA

Training resolution

double column
single column (1024x768)
single column (512x384)
single column ensemble
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